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Abstract

The understanding of many physical and engineering problems involves running
complex computational models (computer codes). With problems of this type, it is
important to understand the relationships between the input variables (whose values
are often imprecisely known) and the output. The goal of sensitivity analysis (SA) is
to study this relationship and identify the most significant factors or variables affect-
ing the results of the model. In this presentation, an improvement on existing meth-
ods for SA of complex computer models is suggested for use when the model is too
computationally expensive for a standard Monte-Carlo analysis. In these situations, a
meta-model or surrogate model can be used to estimate the necessary sensitivity index
for each input. A sensitivity index is a measure of the variance in the response that is
due to an input. Most existing approaches to this problem either do not work well with
a large number of input variables and/or they ignore the error involved in estimating
a sensitivity index. Here, a new approach to sensitivity index estimation using meta
models and bootstrap confidence intervals is proposed that appears to provide satisfac-
tory solutions to these drawbacks. Further, an efficient yet very effective approach to
incorporate this methodology into an actual SA is presented. Several simulation and
real data examples illustrate the utility of this approach. This framework can be easily
extended to uncertainty analysis as well.

Keywords: Bootstrap; Confidence intervals; Meta-model; Nonparametric regression; Sensitivity
analysis; Surrogate model; Uncertainty analysis; Variance decomposition;
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1 Introduction

The analysis of many physical and engineering phenomena involves running complex com-
putational models (computer codes). It is almost universally accepted that the sensitivity
analysis (SA) and uncertainty analysis (UA) of these complex models are important and
necessary components to overall analyses [1, 2, 3, 4, 5]. The purpose of SA is to identify
the most significant factors or variables affecting the model predictions. The purpose of
UA is to quantify the uncertainty in analysis results due to the uncertainty in the inputs.
A computational model that sufficiently represents reality is often very costly in terms of
run time. Thus, it is important to be able to characterize model uncertainty and perform
SA with a limited number of model runs. In this presentation, we suggest an effective pro-
cedure for SA of such expensive computer models using meta-models and variance based
sensitivity measures. This approach has several advantages over existing procedures: (i)
efficient use of computational resources, (ii) effective handling of a very large number of
input variables, and (iii) generation of confidence interval estimates of sensitivity and/or
uncertainty measures.

In general, we will consider complex computer models of the form

y = f(x) + ε, (1.1)

where y = (y1, . . . , yq) is a vector of outputs, x = [x1, x2, . . . , xp] is a vector of imprecisely
known inputs, and ε is a vector of errors (usually small) incurred by the numerical method
used to solve for y. For example, ε could result from chaotic behavior introduced by a stop-
ping criterion where input configurations arbitrarily close to one another can fail to achieve
convergence in the same number of iterations. Although analyses for real systems almost
always involve multiple output variables as indicated above, the following discussions as-
sume that a single real-valued result of the form y = f(x) + ε is under consideration. This
simplifies the notation and the results under discussion are valid for individual elements of
y.

The model f can be quite large and involved (e.g., a system of nonlinear partial dif-
ferential equations requiring numerical solution or possibly a sequence of complex, linked
models as is the case in a probabilistic risk assessment for a nuclear power plant [6] or a
performance assessment for a radioactive waste disposal facility [7]); the vector x of anal-
ysis inputs can be of high dimension and complex structure (i.e., several hundred variables,
with individual variables corresponding to physical properties of the system under study or
perhaps to designators for alternative models).

The uncertainty in each element of x is typically characterized by a probability distribu-
tion. Such distributions are intended to numerically capture the existing knowledge about
the elements of x and are often developed through an expert review process. See [8, 9]
for more on the characterization of input variable uncertainty. After the characterization of
this uncertainty, a number of approaches to SA are available, including differential analysis,
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variance decomposition procedures, Monte Carlo (sampling-based) analysis, and response
surface methods [8, 9, 10]. Variance decomposition is perhaps the most informative and
intuitive means with which to summarize the uncertainty in analysis output resulting from
uncertainty in individual input variables. This procedure uses measures such as

sj =
Var(E[f(x) | xj])

Var(f(x))
(1.2)

and

Tj =
E(Var[f(x) | x(−j)])

Var(f(x))
=

Var(f(x))− Var(E[f(x) | x(−j)])

Var(f(x))
, (1.3)

where x(−j) = {x1, . . . , xj−1, xj+1, . . . , xp}, to quantify this uncertainty. The use of these
measures is reviewed in [8]. The quantity sj corresponds to the proportion of the uncer-
tainty in y that can be attributed to xj alone, while Tj corresponds to the total uncertainty
that can be attributed to xj and its interactions with other variables. These calculations re-
quire the evaluation of p-dimensional integrals which are typically approximated via Monte
Carlo sampling on the joint distribution of x. Unfortunately, this is too computationally in-
tensive to be feasible for most complex computer models.

An alternative procedure to the direct evaluation of Tj and similar measures is to use
a meta-model (or surrogate) for f to perform the necessary model evaluations [11, 12]. A
meta-model, denoted f̂ , is much simpler in form and faster to evaluate than the actual com-
puter model. This approach involves taking a sample of size n from the joint distribution
(e.g. a simple random sample or Latin hypercube sample [13, 14]) and evaluating the actual
computer model, f , at each of the n design points. The data can then be used to create a
meta-model for f . It is assumed that n is a fairly modest number of model evaluations,
but large enough to allow for a flexible meta-model estimation. The most commonly used
method for function estimation is linear regression, which has been used with much suc-
cess for SA when the underlying function is approximately linear. However, it is often the
case that linear regression can fail to appropriately identify the effects of the elements of
x on y when nonlinear relations are present. Rank regression works very well to identify
the strength of relationships between inputs and output in nonlinear situations as long the
relationships between inputs and output are approximately monotonic [9, 15]. However,
rank regression does not provide a meta-model as the resultant regression model does not
directly provide useful output predictions at new x locations. In nonlinear situations, non-
parametric regression methods can be used to achieve a better approximation than can be
obtained with linear regression procedures [12].

In this presentation, we describe several modern nonparametric regression methods and
compare their performance in calculating sensitivity measures. We also present a general
approach to calculating confidence intervals for these measures. This allows a practitioner
to account for the variability (i.e. sampling based error) involved in the assessment of vari-
able importance. This presentation continues the investigation of the use of nonparametric
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regression procedures in SA initiated in [12] by presenting (i) comparisons of several state
of the art meta-models, (ii) more relevant and precisely defined sensitivity measures, (iii)
confidence intervals for these measures, and (iv) a general method for fast yet effective
sensitivity analysis of complex models.

In Section 2 we describe how to use a flexible meta-model to calculate sensitivity mea-
sures and associated confidence intervals. We then discuss some of the more useful non-
parametric regression procedures available to fit meta-models in Section 3. A simulation
study to illustrate the properties of the proposed methodology is given in Section 4. Sec-
tion 5 describes an efficient procedure for implementation and gives an example of this
approach in practice. Finally, a concluding discussion is given in Section 6.
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2 Calculating Sensitivity Measures

Assume for the following that a design has been generated for the uncertain inputs (either
fixed or random) and the model has been evaluated at the design points. In this section
we consider the calculation of sensitivity indexes for two cases: (i) A linear and/or rank
regression is used to fit this data or (ii) A more flexible model is needed.

2.1 Sensitivity Measures for Linear and Rank Regression

If the fit from linear or rank regression is adequate, then we recommend using the familiar
approach of calculating Standardized Regression Coefficients (SRCs) and Partial Corre-
lation Coefficients (PCCs) or the analog of these quantities for rank data as described in
[9, 16, 17]. The main reasons for this are (i) These quantities are familiar and simple to
understand and (ii) they are very fast and easy to calculate.

If the fit from both the linear and rank regressions is inadequate, then we recommend
calculating the quantities described in Section 2.2 below. The definition of an “adequate”
fit is of course somewhat arbitrary. We recommend the following rule: if the R2 value of
the model is greater than a cut-off value then the fit is adequate. In practice, the appropriate
cut-off value to use is clearly problem dependent. We discuss this issue further in Section 5.

2.2 Sensitivity Measures for More Flexible Models

When the fits from linear and rank regression are inadequate, a more flexible meta-model
can be used. The discussion of meta-model choice is delayed until Section 3. It suffices for
the discussion here to assume we are using an appropriate meta-model to approximate the
computer model. In this case, there are two basic types of sensitivity measures that we will
consider. The first is the Tj given in Eq. (1.3), which was proposed by Homma and Saltelli
[18]. This is generally a very good single number summary of the overall importance of an
input variable. It has the interpretation of “the total proportion of the uncertainty in y due
to xj (including xj’s interaction with other variables)”. It is important to stress that we will
be using a meta-model, f̂ , to carry out the necessary calculations to obtain Tj . Hence, the
result is really an estimate of the true Tj given by

T̂j =
E(Var[f̂(x) | x(−j)])

Var(f̂(x))
. (2.1)

The quantity in Eq. (2.1) can be calculated via Monte Carlo sampling over the x distri-
bution; see p. 178 of [8] for an efficient implementation of this. Accurate Monte Carlo
approximation requires many thousands of evaluations of f̂ . However, unlike the case for
the actual model f , this is quite feasible, as f̂ is generally much faster to evaluate than f .
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The second measure we will use is the stepwise variance contribution, denoted Sj .
Notice that we use uppercase Sj to distinguish from the main effect variance contribution,
sj , defined in Eq. (1.2). The quantity Sj is motivated by stepwise model fitting. When
building a model in a stepwise fashion, it is informative to observe the increase in R2

(uncertainty in y accounted for by the model) for each variable that enters the model. The
meta-model used does not need to be constructed in a stepwise fashion in order to use Sj .
We can still obtain such stepwise measures by calculating the following quantities from the
fitted model.

Define the first variable to ”enter” the model by xj for the j that maximizes

U1,j =
Var[E(f(x)|xj)]

Var(f(x))
. (2.2)

Let a1 = arg maxj U1,j so that xa1 is the input variable that maximized U1,j . The second
variable to ”enter” is then defined by the maximizer of

U2,j =
Var[E(f(x)|xa1 , xj)]

Var(f(x))
. (2.3)

Similarly, define xa2 to be the variable that maximizes U2,j . In general, the kth variable to
”enter” the model corresponds to the maximizer of

Uk,j =
Var[E(f(x)|xa1 , xa2 , ..., xak−1

, xj)]

Var(f(x))
. (2.4)

Now, define

Sak
= Uk,ak

for k = 1, . . . , p. (2.5)

That is, set Sj = Sak
for the value of k such that ak = j. The differences between

successive Sa,k provide a measure of the incremental increase in the proportion of the
uncertainty explained by including the uncertainty of the ak

th variable in a stepwise manner.
This has a lot of intuitive appeal since practitioners are familiar with the concept of stepwise
contribution when adding a variable to an existing model. The quantities Sj and Tj parallel
the relationship between Type I sums of squares and Type III sums of squares for regression
models in the popular SAS software ([19]).

Finally, define Ûk,ak
, k = 1, . . . , p, by replacing f with f̂ in Eqs. (2.2) - (2.4) and let

the estimate of Sj be given as

Ŝak
= Ûk,ak

for k = 1, . . . , p. (2.6)

That is, set Ŝj = Ŝak
for the value of k such that ak = j. Calculation of Ŝj is performed

via Monte Carlo sampling in a similar manner to that for T̂j; see p. 178 of [8] for details.
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2.3 Confidence Intervals

The biggest advancement included in this work is the introduction of confidence intervals
(CIs) for sensitivity measures estimated from meta-models. The use of meta models for
estimating sensitivity measures can be more accurate than the use of standard Monte Carlo
methods for estimating these measures with small to moderate sample sizes. However,
exactly how accurate these estimates are for a given sample size is of course problem de-
pendent. It is very important to know how much confidence we can have in our importance
measures and rankings for the individual input variables.

By definition, a 100(1−α)% CI for Tj should contain the true value of Tj 100(1−α)%
of the time under repeated experimentation. In our case, the experiment entails taking a
sample of size n from the x distribution, evaluating the computer model at these n design
points, and then using these n values to create a confidence interval for Tj . If we repeat this
experiment say 1,000 times, we would expect 950 of the resultant 1,000 95% CIs for Tj to
contain the true value of Tj .

Such a CI for Tj can be calculated using a bootstrap approach which will be described
shortly. It might also be of interest to obtain CIs for other quantities as well. These could
be calculated using the same approach described below. It is important to recognize that
the confidence sets formed from the popular Gaussian process (or Kriging) models are
not confidence intervals by the definition above. These are really Bayesian Credible sets
as discussed in Section 3.5, which are a different entity. This is not to say that Gaussian
process models are not useful; in fact, they can be quite useful as demonstrated in Section 4.
We begin our discussion of bootstrap CIs by reviewing the basic bootstrap.

Review of Bootstrap CIs

Let Y denote a random variable (RV) characterized by a cumulative distribution function
(CDF) F . Suppose we observe a random sample

Y = (Y1, . . . , Yn) (2.7)

according to F . Now let

θ̂ = θ̂(Y ) (2.8)

be an estimate for some parameter of interest

θ = θ(F ). (2.9)
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If we knew the distribution of (θ̂ − θ), we could find zα/2 and z1−α/2 such that

Pr(zα/2 ≤ θ̂ − θ ≤ z1−α/2) = 1− α, (2.10)

where Pr(A) is the probability of an event A. Then,

(θ̂ − z1−α/2, θ̂ − zα/2) (2.11)

is a (1− α)100% CI for θ. Generally we don’t know the distribution of (θ̂ − θ) but we can
approximate it with a bootstrap distribution [20, 21].

The main idea behind the bootstrap procedure is to use an estimated CDF, F ∗, in
place of F . There are many ways to obtain F ∗ (e.g. use the empirical CDF or somehow
parametrize F so it belongs to a family, such as Gaussian, exponential, etc., and estimate
the parameters of that family). Once we obtain F ∗, we can mimic the data generating
process that produced Y . That is, we can draw a sample of size n from F ∗, denoted as
Y ∗ = (Y ∗

1 , . . . , Y ∗
n ). Here, Y ∗ is called a bootstrap sample to emphasize that it is a sample

from the estimated CDF, F ∗.

The most familiar bootstrap procedure is that which samples the data with replacement
to obtain the bootstrap sample Y ∗. This is equivalent to taking a random sample from the
empirical CDF (i.e. using F ∗(y) = (1/n)

∑n
i=1 I(−∞,Yi](y) where IA(x) is the indicator

function, defined by IA(x) = 1 if x ∈ A and 0 otherwise). If the empirical CDF is used for
F ∗, the following procedure is called the nonparametric bootstrap. However, any estimate
of F can be used to draw a bootstrap sample. If the estimate F ∗ is obtained by some other
means than the empirical CDF, the resultant procedure is called the parametric bootstrap.

Once a bootstrap sample Y ∗ is created, we could then calculate θ̂ for the the bootstrap
sample, that is

θ̂∗ = θ̂(Y ∗), (2.12)

where the ∗ is to emphasize that θ̂∗ is an estimate of θ which came from a bootstrap sample.
Once F ∗ is obtained, the value of the parameter θ for the CDF F ∗,

θ∗ = θ(F ∗), (2.13)

is also known (or at least can be calculated).

Recall, the goal is to approximate the α/2 and 1−α/2 quantiles (zα/2 and z1−α/2) of the
Z = (θ̂ − θ) distribution. With the bootstrap procedure, these quantities are approximated
using the distribution of Z∗ = (θ̂∗ − θ∗). Denote the α/2 and 1− α/2 quantiles of the Z∗
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distribution as z∗α/2 and z∗1−α/2, respectively. Sometimes it is possible to calculate z∗α/2 and
z∗1−α/2 analytically. If so, the bootstrap CI can be given as

(θ̂ − z̃∗1−α/2, θ̂ − z̃∗α/2), (2.14)

which is an approximation to Eq. (2.11).

More often, it is necessary to approximate z∗α/2 and z∗1−α/2 using bootstrap sampling.
That is, generate M samples Y ∗

k, k = 1, . . . ,M , from the F ∗ distribution, each time
calculating

θ̂∗k = θ̂(Y ∗
k). (2.15)

Now order the θ̂∗k from smallest to largest. That is, let θ̂∗(j) = θ̂∗k for some k = 1, . . . ,M ,
and θ̂∗(1) ≤ θ̂∗(2) ≤ . . . ≤ θ̂∗(M). Then, let

z̃∗q = θ̂∗([qM ]) − θ∗, (2.16)

where [qM ] is the closest integer to qM for 0 ≤ q ≤ 1. The bootstrap I is then given by

(θ̂ − z̃∗1−α/2, θ̂ − z̃∗α/2). (2.17)

This is an approximation to Eq. (2.11). This result is not the same as simply using the
quantiles of the empirical distribution of θ̂∗ to develop a CI for θ. Using quantiles of the
θ̂∗ distribution to make a CI for θ can result in a large bias which may not go away even
asymptotically. That is, the actual confidence level of such a CI may be poor even as n
gets very large. The procedure leading to Eq. (2.17), however, automatically corrects for
potentially biased estimation of θ (p. 27, [20]).

There are two sources of approximation error involved in creating the CI in Eq. 2.17: (i)
the error involved in approximating zα/2 and z1−α/2 with the corresponding quantities from
the bootstrap distribution, z∗α/2 and z∗1−α/2 and (ii) the sampling error involved in further
approximating z∗α/2 and z∗1−α/2 with z̃∗α/2 and z̃∗1−α/2. In concept the error represented in (ii)
can be made arbitrarily small by making the number of the bootstrap samples, M , large.
The error described in (i) can only be reduced by increasing the size of the original sample,
Y . Hence the error in (ii) is generally small or negligible compared to the error described
in (i).

Under certain regularity conditions on F , F ∗ and θ̂, this procedure will produce asymp-
totically correct CIs (pp. 37-39, [20]). The performance of these CIs in practice is deter-
mined by how closely the distribution of Z∗ = (θ̂∗ − θ∗) matches that of Z = (θ̂ − θ). Of
course, the goal is to have the distribution of Z∗ resemble the distribution of Z as closely as
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possible. Sometimes another function of θ̂ and θ instead of Z = θ̂∗ − θ∗ can be preferable
to accomplish this. In fact, any function of θ and θ̂, g(θ̂, θ), that can be solved for θ for a
fixed θ̂ can be used to calculate a bootstrap CI. A common alternative to the basic bootstrap
is to standardize by dividing by a variance estimate, e.g.

U =
(θ̂ − θ)√

V̂ar(θ̂)
. (2.18)

Then, the CI is given as

(
θ̂ − ũ∗1−α/2

√
V̂ar(θ̂), θ̂ − ũ∗α/2

√
V̂ar(θ̂)

)
, (2.19)

where the ũ∗α/2 and ũ∗1−α/2 are calculated using

ũ∗q =
θ̂∗([qM ]) − θ∗√

V̂ar(θ̂∗)
(2.20)

in a similar manner to Eq. (2.16). This is called the t bootstrap because of the similarity to
the t statistic. The t bootstrap is known to speed up the rate of convergence and perform
better than the standard bootstrap (using Z instead of U ) in practice in many instances [20].

Bootstrap CIs for Tj

There are many ways to construct bootstrap CIs for the Tj in our situation. Here we describe
one form of the parametric bootstrap with which we have had reasonable results. First, we
construct an appropriate meta-model using the sample {(x1, y1), . . . , (xn, yn)} to obtain an
estimate, f̂ , of the computer model, f . We use the meta model, f̂ , as though it is the actual
computer model to carry out the calculation of T̂j as defined in Eq. (2.1). For the rest of the
discussion, assume that j is fixed. However, in practice the indicated calculation would be
performed for j = 1, . . . , p.

The goal is to obtain a CI for Tj; hence, we will discuss a procedure to obtain a bootstrap
distribution of

Z = T̂j − Tj. (2.21)

A CI for Tj is then given by

(
T̂j − z∗1−α/2 , T̂j − z∗α/2

)
, (2.22)
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where z∗1−α/2 and z∗α/2 are determined from the bootstrap distribution of Z which is obtained
as described below.

In this case, the data consists of values for (x, y); thus, F ∗ is a joint distribution for
the variables (x, y). We do not actually need to define F ∗ explicitly as we only need to be
able to draw a bootstrap sample, (x∗

i , y
∗
i ), i = 1, . . . , n, from F ∗. Once this can be done,

the bootstrap distribution of Z can be approximated by taking many bootstrap samples
(samples from F ∗) as described in the preceding subsection.

A sample, (x∗
i , y

∗
i ), i = 1, . . . , n, from F ∗ can be obtained as follows. Generate a new

sample, (x∗
1, . . . ,x

∗
n), from the same distribution, Fx, that generated the original sample

of inputs, (x1, . . . ,xn). It is assumed here that Fx is known. If Fx is not known, then
(x∗

1, . . . ,x
∗
n) can be set equal to the original sample (x1, . . . ,xn) or (x∗

1, . . . ,x
∗
n) can be

produced by sampling with replacement from (x1, . . . ,xn) (i.e. sampling from the empir-
ical CDF of x). The corresponding y values, (y∗1, . . . , y

∗
n), are obtained by

y∗i = f̂(x∗
i ) + ε∗i , (2.23)

where the ε∗i are sampled with replacement from the model residuals εi = yi − f̂(xi),
i = 1, . . . , n. As a reminder, f̂(x∗

i ) is the meta-model constructed from the original sample,
{(x1, y1), . . . , (xn, yn)}, but evaluated at the new sampled values of x∗

i . We now have a
sample (x∗

i , y
∗
i ), i = 1, . . . , n from F ∗. This sampling strategy assumes a homogeneous

distribution of the errors across the important input variables. If this is not a reasonable
assumption, the wild bootstrap could also be used; see p. 247-249 of [21] for more details.

Now repeat this process of obtaining a bootstrap sample as described above M times,
so that we have M independent samples of size n from F ∗. We denote these M samples as
{(x∗

1, y
∗
1)k, . . . , (x

∗
n, y

∗
n)k}, k = 1, . . . ,M . Use each sample, {(x∗

1, y
∗
1)k, . . . , (x

∗
n, y

∗
n)k}, to

construct a new meta-model, f̂ ∗k . Then, use each f̂ ∗k to perform the calculation of Tj as in
Eq. (2.1) and denote the result by T̂ ∗

j,k, k = 1, . . . ,M . Let

Z∗
k = T̂ ∗

j,k − T̂j, (2.24)

where T̂j is the estimate of Tj obtained from the initial meta-model f̂ . Find the α/2 and (1−
α/2) sample quantiles (z∗α/2 and z∗1−α/2, respectively) from the collection {Z∗

1 , . . . , Z
∗
M}.

The CI is then given by Eq. (2.22). A technical detail is that the lower (or upper) limit of
the CI can be less than zero (or greater than one). When this happens the endpoint of the
CI could simply be truncated so that the CI is a subset of [0, 1]. However, we recommend
shifting the interval to be a subset of [0, 1] while maintaining its original length. For exam-
ple, a CI of [−.2, .3] would be shifted to become [0, .5]. Our experience suggests that the
empirical performance is better (coverages closer to the nominal value) when the interval
is shifted instead of truncated.

Bootstrap p-values can also be calculated for the null hypothesis Tj = 0. This is ac-
complished by calculating a lower confidence bound (LCB) for Tj instead of a CI. A LCB
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for Tj can be obtained by calculating the (1−α) quantile z∗1−α. The 100(1−α)% LCB for
Tj is then given by

Lα = T̂j − z∗1−α. (2.25)

A decision rule for an α level of significance test of hypotheses H0 : Tj = 0 vs. Ha : Tj > 0

is given by: If Lα > 0 then reject H0, else do not reject H0 (i.e. reject H0 if T̂j > z∗1−α).
The p-value for this test is defined as the smallest value of α for which H0 can be rejected.
Thus,

p-value = inf{α : T̂j > z∗1−α} (2.26)

is the desired bootstrap p-value.

The basic bootstrap quantity for Tj in Eq. (2.21) could also be scaled by a variance
estimate to produce a t bootstrap as in Eq. (2.18). This requires a variance estimate for T̂j

to be calculated for every bootstrap sample. Unfortunately, the more useful meta-models
described in Section 3 result in an f̂ that is difficult to study analytically. As T̂j is a com-
plex functional of f̂ , precise variance estimates of T̂j are not available in most cases. The
asymptotic variance for a similar estimator of Tj is given on p. 1453 of [22]. This estimate
is not exactly valid in our case, but it could still be used to form the t bootstrap statistic.
This may produce a distribution of Z∗ which is closer to that of Z than the basic bootstrap
described above; thus, increasing the accuracy of the bootstrap CIs.

In the test cases we have tried, however, this t bootstrap adjustment was not effective at
further increasing the accuracy of the bootstrap CIs. The use of this adjustment is also more
complicated and takes somewhat longer computationally. Hence, we recommend using the
basic bootstrap and do not provide any computational details about the t bootstrap for T̂j .
However, the t bootstrap could still be helpful in other problems than those studied here. In
addition, it may be possible to work out a more precise variance estimate for Tj based on the
particular meta-model used. This could make the increase in accuracy from the t bootstrap
over the basic bootstrap more pronounced and thus worth the additional computation. This
is a topic for further study.
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3 Meta Models

The success of the strategy discussed in Section 2 depends on the performance of the se-
lected meta-model. As indicated, linear regression remains the most popular choice for
model construction because of its simplicity. When the output is approximately linear in
the inputs, it should still be used. However, linear regression will often fail to appropriately
identify the importance of certain input variables that have nonlinear effects on the analysis
results; see Section 4. In these situations, a more flexible model must be used.

There are many choices of multiple predictor nonparametric regression procedures.
Storlie and Helton [12] review some of the more traditional nonparametric regression pro-
cedures such as locally weighted polynomial regression (LOESS), additive models (GAMs),
projection pursuit regression (PPR), and recursive partitioning (RPART). An implementa-
tion of quadratic response surface regression (QREG) was also described. These techniques
were shown to be quite useful for SA.

There are several other more state of the art methods that are known to be effective for
modeling complex behavior including: Multivariate Adaptive Regression Splines (MARS)
[23], Random Forest (RF) [24], Gradient Boosting Machine (GBM) [25], and Adaptive
COmponent Selection and Smoothing Operator (ACOSSO) [26]. Gaussian Process (GP)
models [27, 28, 11] have also become popular meta-models. We give a description of each
of these methods below.

For each of the following procedures, it is assumed that we obtain data (x1, y1), . . . , (xn, yn)
and that the data were produced through the relation

yi = f(xi) + εi, i = 1, . . . , n, (3.1)

where f is the function we wish to estimate (i.e. the computer model) and εi is an error
term. As indicated earlier, the deterministic computer model also fits this framework since
the actual model is most often observed with a small amount of numerical error.

3.1 Multivariate Adaptive Regression Splines

The MARS procedure was made popular by Friedman [23]. This method is essentially a
combination of spline regression, stepwise model fitting, and recursive partitioning. We
first describe the MARS procedure for only one input variable, x, and then generalize to
the multiple input setting. Thus, the data we observe is (x1, y1), . . . , (xn, yn). For the one
input setting, we employ a slight abuse of notation by using xi to denote the ith observed
value of a univariate input x. In all other cases, xj refers to the jth element of the input
vector x.

Consider the class of linear spline functions along the input variable x with knots at all

20



the distinct data points, i.e. all functions g such that

g(x) = b0 +
n+1∑
k=1

bkφk(x), (3.2)

for some real valued coefficients {b0, b1, . . . , bn+1} and where φ1(x) = x, φk(x) = |x −
xk−1|+, k = 2, . . . , n + 1, |x|+ = x if x > 0 and 0 otherwise, The MARS procedure uses
functions of the form given in Eq. (3.2) to approximate the unknown output function f .
Specifically, MARS fits a curve by adding basis functions to a model in a stepwise manner.
MARS first fits a model with only the intercept term, i.e.

f̂1(x) = b̂0, (3.3)

where b̂0 = ȳ. Call this Model 1. Then MARS fits the linear regression model

f̂2(x) = b̂0 + b̂1φ1(x) (3.4)

via least squares and call this Model 2. Now MARS adds to Model 2 the basis function, φj ,
that results in the largest decrease in the Sum of Squares Error (SSE). That is, all models
of the form

f̂3,k(x) = b̂0 + b̂1φ1(x) + b̂kφk(x) (3.5)

for k = 2, . . . , n + 1 are fit via least squares and the model that reduces SSE =
∑n

i=1(yi−
f̂(xi))

2 the most is retained. Denote this Model 3.

Now a fourth basis function is chosen to be added to Model 3 to minimize the SSE.
This process is repeated until M basis functions (including the intercept) have been added
to the model, where M ≤ n is a user defined parameter. The exact value of M will not have
much effect on the final estimate as long as it is chosen large enough. In this presentation,
M is set to min{n, 200}.

At this point, the MARS procedure considers stepwise deletion of basis functions. That
is, the current model, fM , has an intercept term, a linear trend term and M − 2 other basis
functions. Now consider the possible removal of each one of these M − 2 basis functions.
The basis function whose removal will result in the smallest increase in SSE is chosen to
be deleted from the model. Typically, the intercept and linear trend, φ1, are not considered
candidates for removal. This process is continued until all basis functions have been deleted
from the model and only the linear regression model Eq. (3.4) remains.

When this entire process is completed 2M−2 models have been built (one at each stage)
during this stepwise procedure. Each of these models is a candidate for the final model.
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To choose the “best” model, the generalized cross validation (GCV) score is calculated for
each candidate model. Let GCVl denote the GCV score for the lth model in the stepwise
construction, l = 1, . . . , 2M − 2. This quantity is defined as

GCVl = SSEl/(1− (νml + 1)/n), (3.6)

where ml and SSEl are the number of basis functions and the SSE for the lth model,
respectively and ν is a penalty (or cost) per basis function. The user defined parameter,
ν, essentially acts as a smoothing parameter. That is, smaller values of ν result in smaller
models (i.e. fewer basis functions), while larger values of ν result in larger models. Hence,
ν controls the trade off between model complexity and fidelity to the data. In practice, ν is
usually chosen between 2 and 4. The model out of the 2M −2 candidates with the smallest
GCV score is chosen as the MARS estimate.

If there is more than one predictor variable, then we switch back to the notation that xj

refers to the jth element of the vector of inputs, x. The data we observe is (x1, y1), . . . , (xn, yn).
For notational purposes, let gj be a generic linear spline function of the input variable xj

with knots at all the distinct values of xj , i.e.

gj(xj) =
n+1∑
l=0

bj,lφj,l(xj), (3.7)

where (i) {φj,0 = 1, φj,1, . . . , φj,n+1} is a basis for a linear spline on xj with knots at n
distinct data points and (ii) {bj,0, bj,1, . . . , bj,n+1} are constants, j = 1, . . . , p.

For purposes of illustration, assume for the moment that there are p = 2 inputs. We
wish to extend the linear spline to two dimensions by constructing a model that allows the
coefficients of the linear spline on x1, {b1,0, b1,1, . . . , b1,n+1}, to vary as a function of x2.
Specifically, let b1,l(x2) =

∑n+1
m=0 cl,mφ2,l(x2), where cl,m are constants, l,m = 1, . . . , n+1,

so that each coefficient for the linear spline on x1 is a linear spline on x2. Then, let

g(x) =
n+1∑
l=0

b1,l(x2)φ1,l(x1)

=
n+1∑
l=0

n+1∑
m=0

cl,mφ2,m(x2)φ1,l(x1)

= [c0,0]1 +

[
n+1∑
l=1

cl,0φ1,l(x1) +
n+1∑
l=1

c0,lφ2,l(x2)

]
2

+

[
n+1∑
l=1

n+1∑
m=1

cl,mφ1,l(x1)φ2,m(x2)

]
3

= [constant]1 + [main effects]2 + [two-way interaction]3 . (3.8)

The function g(x) is called the tensor product spline, since functions of this form can also
be constructed as the tensor product of two univariate spline spaces [23]. Notice that the
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first term in Eq. (3.8) is the intercept, the next summation includes only functions of one
variable (main effects), and the last summation includes functions of two variables (two-
way interactions).

For general p, we can write the tensor product spline as

g(x) =
n+1∑
l1=0

n+1∑
l2=0

· · ·
n+1∑
lp=0

cl1,l2,...,lpφ1,l1(x1)φ2,l2(x2) · · ·φp,lp(xp)

= [d0]1 +

 p∑
j=1

(
n+1∑
l=1

dj,lφj,l(xj)

)
2

+

 p∑
j=1

p∑
k>j

(
n+1∑
l=1

n+1∑
m=1

dj,k,l,mφj,l(xj)φk,m(xk)

)
3+ · · ·+

n+1∑
l1=1

n+1∑
l2=1

· · ·
n+1∑
lp=1

cl1,l2,...,lpφ1,l1(x1)φ2,l2(x2) · · ·φp,lp(xp)


4

= [constant]1 + [main effects]2 + [2-way interactions]3 + [higher interactions]4 ,(3.9)

where the d0, dj,l, etc. correspond to particular values of the cl1,l2,...,lp . The general MARS
procedure uses functions of the form given in Eq. (3.9) as opposed to those given in
Eq. (3.2) for the univariate MARS procedure to approximate the unknown output func-
tion f . In most instances, however, it is not necessary to include all terms from the full
tensor product. Often, an additive model (intercept + main effects) will sufficiently model
the data. That is, we could consider approximations for f of the form

gadd(x) = d0 +
p∑

j=1

(
n+1∑
l=1

dj,lφj,l(xj)

)
. (3.10)

More generally, we could consider the following two-way interaction spline model as an
approximation to f :

gint(x) = d0 +
p∑

j=1

(
n+1∑
l=1

dj,lφj,l(xj)

)
+

p∑
j=1

p∑
k>j

(
n+1∑
l=1

n+1∑
m=1

dj,k,l,mφj,l(xj)φk,m(xk)

)
.(3.11)

In either case (additive model or two-way interaction model), we can write the approxima-
tion as

h(x) = d0 +
K∑

l=1

dlθl(x) (3.12)

for constants dl, l = 1, . . . , K, and appropriately defined basis functions θl, where K =

p(n + 1) for the additive model in Eq. (3.10) and K = p(n + 1) +
(

p
2

)
(n + 1)2 for the two

way interaction model in Eq. (3.11). Three way and higher order interaction models can
also be considered, but this is not common practice.
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The order of the interaction desired for the resulting model must be specified. Once this
is done, the MARS algorithm proceeds exactly as in the one input variable case, but with
the representation in Eq. (3.12) in place of the representation in Eq. (3.2). That is, MARS
first fits the intercept only model,

f̂1(x) = d̂0, (3.13)

where d̂0 = ȳ. Then MARS fits all K possible models with two basis functions:

f̂2,k(x) = d0 + dkθk(x) (3.14)

for k = 1, . . . , K via least squares. The basis function θk (from the K possible) that gives
the smallest SSE is chosen to be the one that enters the model. Once this basis function is
included, MARS looks for the next basis function to add and so on. Once M basis functions
have been added, MARS starts to remove basis functions in the same manner as for one
input variable. In the end, there are 2M + 1 possible models and the one with the lowest
GCV score is chosen as the MARS estimate.

As a side effect of this model construction, it is common that the final model will not
contain any basis functions corresponding to certain input variables. For instance, the fi-
nal model may have none of the φj,l included, effectively removing xj from the model.
Thus, MARS does automatic variable selection (meaning it automatically includes impor-
tant variables in the model and excludes unimportant ones).

Most implementations of MARS also enforce the restriction that interaction basis func-
tions can enter the model only after both corresponding main effect basis functions are in
the model (i.e. φj,lφk,m is not allowed as a candidate to enter the model until both φj,l and
φk,m have been included). In addition, it is usually the case that the overall linear trend
term φj,1 = xj must enter the model before any other φj,l, l > 1, terms can enter. In the
backwards deletion steps, the φj,1 is also not allowed to be deleted unless all other φj,l,
l > 1, are out of the model first. The implementation used here enforces both of the above
restrictions, which increases efficiency and typically results in better variable selection.

3.2 Random Forest

Random Forests (RFs) [24] are machine learning algorithms that were developed originally
as classifiers (i.e. for a response that takes on values which are categories or classes). A RF
classifier builds several classification trees by randomly choosing a subset of input variables
in a manner to be described below. For a given x value, the output from the RF is the class
that is the mode (most frequent value) of the classes output by individual trees at that x
value. This concept is easily extended to regression by using regression trees in place of
classification trees and letting the output of the RF at x be the average value of the output
by individual regression trees at x.
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Regression trees [29] adapt to the input space by splitting the data into disjoint regions
(also called nodes). A constant (mean of the data in that region) is then used as the approxi-
mation within each region. Each split is made by dividing the observations up at a cutpoint
on one variable. Each split is made in a so called greedy fashion. That is, for the first split,
a variable and cutpoint along that variable are searched for that result in the largest increase
in R2 over the mean only model. Then each of these two created regions are examined
for the split which will again make the largest increase in R2. This process continues until
there are J regions (or nodes). See pp. 267-269 of [29] for a more detailed description of
regression trees.

Specifically, the RF is constructed as detailed by Algorithm 1 below. First, let the
number of observations be n, and the number of predictor variables be p. Set the parameter
m, where m < p is the number of input variables to be used at each node of the tree. Also
set the parameter Nt to be the total number of trees to grow. Lastly, set the parameter nr,
which defines the minimum number of observations to be allowed in each region (or node).
By default in the implementation used here, m = bp/3c and Nt = 500. The algorithm then
proceeds as follows:

Algorithm 1: Construction of Random Forest (RF) Models.

• For k = 1, . . . , Nt, do

1. Select a training sample for this iteration by selecting n observations with re-
placement from the original n observations (i.e. take a nonparametric boot-
strap sample).

2. Randomly choose m of the p input variables. Using these m variables and
the training sample obtained in step 1, calculate the best variable and cutpoint
along that variable to split the data on as in a traditional regression tree. This
creates two nodes. The cutpoint is restricted so that each of these two nodes
has greater than nr observations.

3. For each of the two (parent) nodes created in step 2, randomly choose a new
m out of the p input variables, but continue using the same training sample
obtained in step 1. Using only the m variables chosen in each node respectively,
calculate the best variable and cutpoint along that variable to split the data on
as in a traditional regression tree. This creates two more nodes for a total of
four nodes. Again, the cutpoints are restricted so that each of these four nodes
has greater than nr observations. If either of the parent nodes had less than
2nr observations to begin this step then no split is made on that node.

4. For each of the (parent) nodes created in the previous step, randomly choose a
new m out of the p variables, but continue using the training sample obtained in
step 1. Again split the data in each parent node as in the previous steps unless
the parent node has fewer than 2nr observations.

5. Repeat step 4 on all of the (parent) nodes from the previous step until each node
has less than 2nr observations.

6. After step 5 we have constructed a regression tree with many nodes, each node
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with less than 2nr observations. Let this regression tree estimate be denoted f̂k.
An explicit expression for f̂k is

f̂k =
Nk∑
l=1

ȳl,kIAl,k
x (3.15)

where ȳl,k is the mean of only the yi such that xi ∈ Al,k and Al,k defines the
region in the input variable space corresponding to node l, l = 1, . . . , Nk. That
is, xi ∈ Al,k if and only if the lth node of the tree estimate f̂k contains the ith

observation.

• The RF estimate is given as

f̂(x) =
1

Nt

Nt∑
k=1

f̂k(x). (3.16)

Random Forest is known to be an accurate meta-model in many cases. It can also
handle a large number of input variables and deal with missing data. However, there is
no variable selection performed. Because of the large number of trees involved, the final
model generally has all variables affecting predictions at least to some extent.

3.3 Gradient Boosting Regression

Like RFs, boosting was originally developed for classification purposes [30], [31]. The
underlying idea was to combine the output from many “weak” classifiers into a more pow-
erful committee. Although boosting is applicable to a wide variety of estimation problems,
we restrict our attention here to the boosting tree, which estimates a real-valued function.
This is a special case of the Gradient Boosting Machine (GBM) framework described in
[25].

The general idea behind boosting trees is to compute a sequence of simple trees, where
each successive tree is built for the prediction of the residuals from the preceding tree.
These trees are then put together in an additive expansion to produce the final estimator.

For a given GBM, each constituent regression tree is restricted to have only J terminal
nodes (regions). This distinguishes it from RF where each tree is grown to the point where
each node has only a few (∼ nr) observations. The trees involved in the GBM are all
relatively simple. For example, in many applications J = 2 or 3 would be sufficient This
results in an additive model or a two-way interaction model, respectively, as splits would be
allowed on at most one or two variables for each tree in the expansion. However, Friedman
suggests that there is seldom much improvement over using J = 6 in practice (p. 324
of [29]). That being the case, it is reasonable to use J = 6 to allow for more complex
interactions should they exist. There is also an Nt parameter corresponding to the number
of trees in the expansion. This can be considered a tuning parameter in the sense that R2
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increases as Nt increases. By increasing Nt, we can make the residuals arbitrarily small.
The value of Nt can be chosen via cross validation for example. The specific algorithm to
fit the boosting tree is as follows:

Algorithm 2: Construction of Gradient Boosting Machine (GBM) Models.

1. Fit a regression tree with J nodes to the original data set {(xi, yi)}n
i=1. That is,

search the data for the best variable and cutpoint along that variable to split the
data. Repeat this process on each of the two resulting subsets of the data (nodes) to
find the best variable and cutpoint to make a split in only one of the regions. Continue
until there are J nodes. Call this estimate f̂1.

2. For k = 2, . . . , Nt, do

(a) Fit a regression tree with J nodes to the data set {(xi, ek−1,i)}n
i=1 where ek−1,i =

yi−
∑k−1

l=1 f̂k−1(xi) are the residuals of the model fit form the previous iteration.

(b) Call this estimate f̂k.

3. The final estimate is given as

f̂(x) =
Nt∑

k=1

f̂k(x). (3.17)

As discussed on p. 326 of [29], the performance of the GBM can be improved by
adding a regularization or penalty term to the additive expansion. In step 2 of Algorithm 2,
the residuals would then be calculated as ei = yi −

∑k−1
l=1 νf̂k−1(xi), and

f̂(x) = ν
Nt∑

k=1

f̂k(x) (3.18)

would be used as the final estimate in step 3, where ν < 1 is controlling the “learning rate”
of the boosting tree. In [29], it is suggested that ν < 0.1 gives reasonable performance in
general. This requires Nt to be larger than with ν = 1, which adds computing time but this
strategy generally results in better estimation. We set ν = 0.01 in the implementation used
here. Like RF, GBM also works well for a large number of input variables but does not
perform variable selection.

3.4 Adaptive COmponent Selection and Shrinkage Operator

The ACOSSO estimate [26] builds on smoothing spline ANOVA (SS-ANOVA) models. To
facilitate the description of ACOSSO, we first review the univariate smoothing spline, and
then describe the tensor product spline which underlies the SS-ANOVA framework.
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Univariate Smoothing Splines

Again with some abuse of notation, let xi, i = 1, . . . , n, denote the ith observation of a
univariate input x for the discussion of univariate smoothing splines only. Without loss of
generality, we restrict attention to the domain [0, 1]. We can always rescale the input x to
this domain via a transformation. Assume that the unknown function f to be estimated
belongs to 2nd order Sobolev space S2 = {g : g, g′ are absolutely continuous and g′′ ∈
L2[0, 1]}. The smoothing spline estimate is given by the element g ∈ S2 that minimizes

1

n

n∑
i=1

[yi − g(xi)]
2 + λ

∫ 1

0
[g′′(x)]

2
dx. (3.19)

The penalty term on the right of (3.19) is an overall measure of the magnitude of the curva-
ture (roughness) of the function over the domain. Thus, the tuning parameter λ controls the
trade-off in the resulting estimate between smoothness and fidelity to the data; large values
of λ will result in smoother functions while smaller values of λ result in rougher functions
that more closely match the data. Generally, λ is chosen by generalized cross validation
(GCV) ([32]), m-fold CV ([33]), or related methods (pp. 239-243, [34], pp. 42-52, [35]).
The minimizer of Eq. (3.19) is technically called the cubic smoothing spline because the
solution can be shown to be a natural cubic spline with knots at all of the distinct values of
xi, i = 1, . . . , n (p. 230 [34]).

Multivariate Smoothing Splines

The simplest extension of smoothing splines to multiple inputs is the additive model [35].
For instance, assume that

f ∈ Fadd = {g : g(x) =
p∑

j=1

gj(xj), gj ∈ S2}, (3.20)

i.e. f(x) =
∑p

j=1 fj(xj) is a sum of univariate functions. The additive smoothing spline is
the minimizer of

1

n

n∑
i=1

[yi − f(xi)]
2 +

p∑
j=1

λj

∫ 1

0

[
f ′′j (xj)

]2
dxj (3.21)

over f ∈ Fadd. The minimizer of the expression in Eq. (3.21), f̂(x) =
∑p

j=1 f̂j(xj),
takes the form of a natural cubic spline for each of the functional components f̂j . Notice
that there are p tuning parameters for the additive smoothing spline. These are generally
determined one at a time by minimizing GCV score with respect to λj with the remaining
p− 1 λk, k 6= j, fixed, and then iterating until convergence as in [35].
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To generalize the additive model to allow for two way interactions, we will assume f
belongs to the space

F2way = {g : g(x) =
p∑

j=1

p∑
k=j+1

gj,k(xj, xk) : gj,k ∈ S2 ⊗ S2}, (3.22)

where ⊗ represents the tensor product (pp. 30-31 of [36]). For two function spaces G and
H, the tensor product space is the vector space generated by functions of the form gh for
g ∈ G and h ∈ H, i.e.

G ⊗H =

{
N∑

k=1

gkhk : gk ∈ G, hk ∈ H, k = 1, . . . , N

}
. (3.23)

For a complete treatment of tensor product splines and SS-ANOVA, see [37], [38], [39].

We will also need some additional notation to completely specify all of the functional
components (main effects and two-way interactions). Let

S̄2 = {g ∈ S2 :
∫ 1

0
g(x)dx = 0} (3.24)

and

S2 ⊗ S2 =
{
g ∈ S2 ⊗ S2 :

∫ 1

0
g(x1, x2)dx1 =

∫ 1

0
g(x1, x2)dx2 = 0

}
. (3.25)

Now any function g ∈ F2way can be written

g = b0 +
p∑

j=1

gj(xj) +
p∑

k=1

p∑
l=k+1

gk,l(xk, xl), (3.26)

where b0 is a constant, gj ∈ S̄2 and gk,l ∈ S2 ⊗ S2. The representation in Eq. (3.26) is the
functional ANOVA decomposition of g. The b0 =

∫
[0,1]p g(x)dx can be interpreted as the

overall “average” value of the function; however, technically b0 = E[g(x)] only when x has
a uniform distribution over [0, 1]p. Also, since

∫ 1
0 gk,l(xk, xl)dxk =

∫ 1
0 gk,l(xk, xl)dxl = 0,

the function gj is truly the main effect function for variable xj in the sense that

gj(xj) =
∫
[0,1]p−1

g(x)dx(−j) − b0, (3.27)

where dx(−j) = dx1, . . . , dxj−1, dxj+1, . . . , dxp. Additional background on the preceding
relationships is given in [37] and [39].
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The two-way interaction smoothing spline is given by the element g ∈ F2way that
minimizes

1

n

n∑
i=1

[yi − f(xi)]
2 +

p∑
j=1

λj

∫ 1

0

[
∂2

∂x2
j

gj(xj)

]2

dxj +

p∑
k=1

p∑
l=k+1

λk,l

∫ 1

0

∫ 1

0

[
∂4

∂x2
kx

2
l

gk,l(xk, xl)

]2

dxkdxl. (3.28)

This penalizes the main effect functions exactly the same as before, and also penalizes the
two-way interaction functions by a measure of roughness based on a mixed 4th derivative.
The minimizer of the expression in Eq. (3.28) can be obtained via matrix algebra using
results from reproducing kernel Hilbert space (RKHS) theory; for details see [37], [39].
Notice that this is slightly different from the penalty for the thin plate spline ([37], [38]),
which is popular in spatial statistics.

Generalizing to the ACOSSO estimate

The COmponent Selection and Shrinkage Operator (COSSO) [40] penalizes on the sum
of the norms instead of the squared norms as in Eqs. (3.21) and (3.28). For ease of pre-
sentation, we will restrict attention to the additive model for the remainder of this section.
However, all of the following discussion applies directly to the two-way interaction model
as well.

The additive COSSO estimate, f̂(x) =
∑

f̂j(xj), is given by the function f ∈ Fadd

that minimizes

1

n

n∑
i=1

[yi − f(xi)]
2 + λ

p∑
j=1

{[∫ 1

0
g′j(xj)dxj

]2
+
∫ 1

0

[
g′′j (xj)

]2
dxj

}1/2

. (3.29)

There are three key differences in the penalty term in Eq. (3.29) relative to the additive
smoothing spline of Eq. (3.21). First, there is an additional term

[∫ 1
0 g′j(xj)dxj

]2
, which

can also be written [gj(1)− gj(0)]2, that penalizes the magnitude of the overall trend of
the functional component gj . Second, in contrast to the squared semi-norm in the additive
smoothing spline, each term in the sum in the penalty in Eq. (3.29) can be thought of as a
norm over functions gj ∈ S̄2. This has a similar effect to the Least Absolute Selection and
Shrinkage Operator (LASSO) [41] for linear models in that it encourages some of the terms
in the sum to be exactly zero. These terms are norms over the fj; when such zeros result, f̂j

is set to exactly zero, thus providing automatic model selection. Third, the COSSO penalty
only has one tuning parameter, which can be chosen via GCV or similar means. It can
be demonstrated analytically that the COSSO penalty with one tuning parameter gives as
much flexibility as the smoothing spline penalty with p tuning parameters [40].
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Finally, ACOSSO is a weighted version of COSSO, where a rescaled norm is used as
the penalty for each of the functional components. Specifically, we select as our estimate
the function f ∈ Fadd that minimizes

1

n

n∑
i=1

[yi − f(xi)]
2 + λ

p∑
j=1

wj

{[∫ 1

0
g′j(xj)dxj

]2
+
∫ 1

0

[
g′′j (xj)

]2
dxj

}1/2

, (3.30)

where the wj , 0 < wj ≤ ∞, are weights that can depend on an initial estimate of f which
we denote f̃ . Our implementation of ACOSSO takes f̃ to be the traditional smoothing
spline of Eq. (3.21), which is chosen by the GCV criterion with all λj = λ. We then use

wj =

{[∫ 1

0
f̃ ′j(xj)dxj

]2
+
∫ 1

0

[
f̃ ′′j (xj)

]2
dxj

}−1

. (3.31)

This allows for more flexible estimation (less penalty) on the functional components that
show more signal in the initial estimate. As shown in [26], this approach results in more
favorable asymptotic properties than COSSO.

The minimizer of the expression in Eq. (3.30) is obtained using an iterative algorithm
and a RKHS framework similar to that used to find the minimizer of Eqs. (3.21) and (3.28)
in [37, 39]. The optimization problem for the two-way interaction model can be posed
in a similar way to Eq. (3.30); see [26] for details on this and the computation of the
solution. The two-way interaction model is used in the results of Sections 4 and 5. As it is
a smoothing type method, ACOSSO works best when the underlying function is somewhat
smooth. Like the previous methods, ACOSSO also works well when there are a large
number of input variables.

3.5 Gaussian Process

The Gaussian Process (GP) for use as a meta-model in computer experiments was first
proposed by [27]; see [28, 11] for additional examples of the use of GPs in conjunction
with computer models. A GP is a stochastic process (random function), Y (x), over the
space x ∈ X such that for any finite set of x values, {x1, x2, . . . ,xk},

Y = [Y (x1), Y (x2), . . . , Y (xk)]
′ (3.32)

has a multivariate normal distribution. Hence, a GP is completely characterized by its mean
and covariance functions

µY (x) = E[Y (x)] (3.33)
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and

KY (x, x′) = Cov[Y (x), Y (x′)], (3.34)

respectively. Typically, the meta-model is then defined as

f̂(x) = E[Y (x) | Y (x1) = y1, Y (x2) = y2, . . . , Y (xn) = yn], (3.35)

which is the mean of Y (x) given the observed values (xi, yi), i = 1, . . . , n. The process of
obtaining f̂ is often called Kriging after Daniel Gerhardus Krige [42].

Since Y (x) is Gaussian, the expression for f̂ can be given explicitly as

f̂(x) = µY (x) + γΣ−1(y − µ), (3.36)

where

γ = [KY (x1, x), KY (x2, x), . . . , KY (xn, x)] , (3.37)

Σ =


KY (x1, x1) KY (x1, x2) · · · KY (x1, xn)
KY (x2, x1) KY (x2, x2) · · · KY (x2, xn)

...
... . . . ...

KY (xn, x1) KY (xn, x2) · · · KY (xn, xn)

 , (3.38)

y = [y1, y2, . . . , yn]′ , (3.39)

µ = [µY (x1), µY (x2) . . . , µY (xn)]′ , (3.40)

and the (xi, yi), i = 1, . . . , n are the previously indicated observed values (pp. 160-161
[43]).

It is possible to assume a constant mean GP and let any trend in the output be accounted
for as part of the random process. It is more common, however, to assume that the mean
function is linear in the individual xj . That is,

µY (x) = β0 + β1x1 + · · ·+ βpxp, (3.41)

where the βj are unknown parameters that need to be estimated from the data.
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There are many possible covariance structures one can use; see Section 2 of [44] for a
discussion. Here we focus on one very popular class of covariances, the powered exponen-
tial family [45, 11]. This form of this covariance is

KY (x, x′) = τ 2 exp

−
p∑

j=1

ηj|xj − x′j|ρj

 , (3.42)

where τ 2 = Var[Y (x)] is the unconditional, constant (i.e. for all x) variance of the process.
The ηj , j = 1, . . . , p, referred to as the range parameters, control how far correlation
extends in each input direction, and serve the same purpose as the smoothing parameters
in a smoothing spline model. The power parameters 0 < ρj ≤ 2 control the rate at which
the correlation between points decays across the domain. These may be estimated but are
typically fixed at ρj = 2 resulting in an infinitely differentiable process. Values of 0 < ρ <
2 result in a once differentiable process. These two extremes can be somewhat unsettling,
which led others to consider the Matern family of covariances with which the user can
specify the level of differentiability [46]. However, the powered exponential has more
intuitive appeal in terms of understanding how distance controls correlation and remains
the most commonly used covariance function for the use of GPs in computer models [27,
28, 11, 47].

Often, it is also useful to allow the observations to have an independent and identically
distributed (iid) error term as in the traditional frequentist regression models. In this case,
assume

Y (x) = Z(x) + ε, (3.43)

where Z(x) is a GP with mean and covariance function µZ and KZ , respectively, ε ∼
N(0, σ2) independent for all values of x, and Z(x) independent of ε. Since the noise
process ε and the actual process Z(x) are assumed independent, the covariance function
for Y (x) is obtained by adding what is called the “nugget” term to the covariance function
K. That is,

KY (x, x′) = KZ(x, x′) + σ2I{x=x′}, (3.44)

where σ2 is the variance of the iid errors and I{x=x′} is the indicator function that equals
1 if x = x′ and 0 otherwise. The term σ2I{x=x′} is commonly referred to as the nugget
term. The term nugget is borrowed from gold mining to describe an independent source of
variability much in the way that gold nuggets tend to be randomly scattered within a mine.
Estimation of the model parameters βj , ηj , τ 2, and σ2 commonly proceeds via maximum
likelihood estimation (MLE); see [48, 28, 49] for details.

It may seem a bit unusual at first to treat a deterministic function (like a computer
model), Y (x), as a random process. However, this is consistent with a Bayesian way of
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thinking. For example, the GP that we use represents our prior belief of what our computer
model output will produce. Before the output is evaluated at the design points, these output
values are unknown to us. However, we may have some preconceived notion about what
the output will look like. For example, we may believe that the underlying output function
is “smooth” in some sense. The GP model represents this subjective uncertainty about what
the output might look like. For instance, if we generate several realizations from the GP
model unconditionally, we would expect that the computer output would look something
like one of these realizations if or when it is produced. Thus, the GP is really our prior
distribution on the output.

One benefit to this Bayesian framework is that it produces both an expected value of an
output function f given the data and an entire posterior distribution of f given the observed
values. That is, for a set A ⊂ <k, one can obtain

Pr([f(x1), f(x2), . . . , f(xk)] ∈ A | Y = y) (3.45)

for any set of points x1, x2, . . . ,xk, where Y is the random vector defined in Eq. (3.32)
and y = [y1, . . . , yn]′ is a constant vector containing the observed values of Y . This
posterior distribution is multivariate Gaussian and is determined by calculations similar to
those underlying in Eq. (3.36) to calculate the conditional mean and variance (see p. 160-
161 of [43]). This posterior distribution can be used to develop a Bayesian estimate for
Tj along with Bayesian credible sets for the Tj in place of the T̂j and bootstrap CIs from
Eqs. (2.1) and (2.22). A 100(1− α)% Bayesian credible set for a parameter θ is defined to
be a set A (not necessarily unique) for which Pr(θ ∈ A | Y = y) = 1− α.

To create a Bayesian estimate and credible set for Tj , we need to perform the following
steps:

(1) Generate two samples of size N , [x1, x2, . . . ,xN ] and [x∗
1, x

∗
2, . . . ,x

∗
N ] from the x

distribution according to the column switching procedure designed to calculate Tj

described on p. 178 of [8].

(2) For the two samples in (1) randomly generate the multivariate normal vector .......
[f(x1), . . . , f(xN), f(x∗

1), . . . , f(x∗
N)], from the conditional distribution in Eq. (3.45)

and carry out the calculation of Tj using these values. This constitutes a sampled
value of Tj from the posterior distribution, (i.e. the distribution of Tj given Y = y).
It is important to notice that this does not require any additional evaluations of the
actual model f outside of the n evaluations obtained initially.

(3) Repeat steps (1) and (2) M times to produce M independent draws of Tj , denoted
{Tj,1, . . . , Tj,M} from the posterior distribution. It is assumed that M is reasonably
large (e.g. 1000) so that the posterior distribution is well represented by {Tj,1, . . . , Tj,M}.
A Bayesian estimate for Tj is given by the posterior mean of Tj ,

T̃j =
1

M

M∑
m=1

Tj,m. (3.46)
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A 100(1− α)% credible set is given by

(Tj,α/2, Tj,1−α/2), (3.47)

where Tj,α/2 and Tj,1−α/2 are the α/2 and 1−α/2 sample quantiles of {Tj,1, . . . , Tj,M}.

Technically we do not have to repeat Step (1) in Step (3) but it is beneficial to do so to
account for Monte Carlo (i.e. sampling) error in the numerical evaluation of the Tj used in
the determination of credible intervals.

If the free parameters of the model (βj’s, τ , σ2 ,ηj’s) are estimated via MLE or by some
other means and then treated as fixed (as is suggested here), then this procedure is referred
to as an empirical Bayesian approach. It is well known, however, that this approach can
underestimate the variance in the predictions of new observations [50]. Hence, when using
this approach to estimate uncertainty or sensitivity indices, we still recommend using the
kriging estimate, f̂ , to produce the estimates of Tj as in Eq. (2.1) in conjunction with the
bootstrap procedure to produce confidence intervals.

Because of the inherent Bayesian nature of the GP approach, it is also becoming com-
mon practice to put hyper-priors on the parameters in the mean and covariance functions
to make the procedure “fully” Bayesian (i.e. no MLE estimation involved). We do not
give details of this here, but refer the reader to [47, 45] and references therein. When the
estimation is fully Bayesian, the credible sets discussed in the preceding paragraph become
a more natural way to represent the uncertainty in the estimate.

3.6 Discussion of Meta-Model choice

As is to be expected, the performance of the various procedures will vary widely from one
application to another. For example, quadratic regression [12] will typically outperform
more complex methods when the true surface can be well approximated by a quadratic
function. In a similar manner, ACOSSO will outperform MARS and Recursive Partition-
ing [12] when the true surface is sufficiently smooth. However, recursive partitioning is
very well suited for modeling functions where discontinuities are present. In short, all
of the methods have advantages and disadvantages, and, sometimes, disadvantages in one
situation become advantages in another.

The one thing that seems to be the most useful in a building a meta-model for a complex
computer model with many inputs is some form of variable selection. This becomes very
important for both accuracy and computational efficiency when there are a large number
of input variables. For example, suppose there are 30 input variables and only 5 of them
significantly affect the output. This is a fairly typical situation in real analyses of the type
illustrated in Section 5.2. A method that incorporates variable selection like MARS will
have a model estimate with perhaps 7 variables selected. Hence, Sj and Tj for the other 23
variables are 0 or very close to 0; so we do not need to calculate them. This eliminates a
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substantial portion of the computational burden. Methods like GBM and RF work very well
for approximating a surface in higher dimensions. However, there is no variable selection
inherent to the fit. Hence, when using these methods, it becomes necessary to calculate all
30 Tj values. Even though most Tj values will be very close to 0, we will not know the
identity of such Tj’s until we calculate them.

Of course, one can always incorporate variable selection into any procedure via some
form of thresholding or a stepwise/stagewise/best subset type model selection approach.
However, with complex meta-models, the appropriate criterion to use for model selection
is not always clear. In addition, stepwise model fitting can be a significant computational
burden when a complex model fitting procedure is involved and negate any computational
savings to be gained by the variable selection.

The lack of variable selection is also part of the reason why we do not recommend the
use of standard Gaussian process type models as in [11, 51] when there is a large number
of input variables. In addition to the inefficiency of calculating Tj values, there is also a
concern about estimation accuracy. A Gaussian process in 30 dimensions, for example,
can be hampered by the curse of dimensionality. This is due to the fact that a GP allows
for 30 way and all lower order interactions to be present in the resulting model fit. When
different smoothness parameters are allowed for each x component direction, this problem
is partially alleviated but it may still be an issue in many problems. There are, however,
some very recent works pertaining to variable selection for Gaussian processes [52, 47, 53]
that might make these methods more practical for our purposes here. This is a topic for
further study.
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4 Simulation Examples

In this section we investigate the properties of the proposed methodology for estimating Tj

and the corresponding CIs on various scenarios where the actual values can be calculated.
We will use three example outputs also used in several previous studies [54, 8, 55, 56].
These are:

y1 = f1(x) =
(x2 + 0.5)4

(x1 + 0.5)2
(4.1)

y2 = f2(x) = 2
10∏

j=1

|4xj − 2|+ aj

1 + aj

(4.2)

with [a1, a2, . . . , a10] = [0, 1, 2, 4, 8, 99, 99, 99, 99, 99]

y3 = f3(x) = sin(2πx1 − π) + 7 sin2(2πx2 − π) + 0.1(2πx3 − π)4 sin(2πx1 − π). (4.3)

It is assumed that the output we actually observe is subject to a small amount of error to
mimic the numerical error present in a real application, that is we observe yk,i = fk(xi) +
εk,i, with k = 1, . . . , 4 indexing over the four outputs, and i = 1, . . . , n indexing over
observation. In all the examples, we let the εk,i terms be generated as iid N (0, 0.25)
variables. This produces signal to noise ratios (SNRs) of 2760:1, 8:1, and 55:1 for y1,
y2, and y3, respectively, where SNR = Var[f(x)]/V ar(ε).

In this example model there are 3 output variables and 10 input variables (xj’s), al-
though not all of the inputs have an affect on each of the three outputs. Such multiple out-
puts are usually the case in analyses of real systems (e.g., see the analyses in [57, 7] from
which the examples in Section 5.2 are derived). Further, it is also typical of such analyses
that individual results are not affected by all of the uncertain variables under consideration.

The individual models are functions of anywhere from 2 to 10 input variables. There are
several completely uninformative inputs in output models f1 and f3. Thus, these examples
will test the ability of the methodology to identify important inputs while also testing their
ability to disregard input variables that are uninformative to a particular analysis. The
functions f1 and f2 and the associated distributional assumptions for the xj correspond
to Models 6b, 7 and 9, respectively, in [54] and Models 2-4 in Section 3 of [56]. The
functions f2 and f3 are also considered in Sections 4 and 5 of [55]. Although, here f2 has
been adjusted slightly to involve all 10 inputs as opposed to only the first 8 inputs.

These analytic models have an advantage over the real model considered in the next
section (Section 5.2). Specifically, they are fast enough to evaluate so that it is possible to
calculate with great precision any quantity we wish such as the true values for Sj and Tj of
Eq. (1.3) and Eq. (2.5). This is not possible with a computationally demanding model of
the type considered in Section 5.2, which is of course why we need to use a meta-model for
such calculations. In short, these examples make comparisons between truth and sensitivity
results obtained with the procedures under consideration possible.
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We consider the following meta-models in this evaluation: linear regression (REG),
quadratic regression (QREG), Additive Models (GAMs), Recursive Partitioning (RPART),
Multivariate Adaptive Regression Splines (MARS), Adaptive COmponent Selection and
Smoothing Operator (ACOSSO), Random Forests (RF), Gradient Boosting Method (GBM),
Gaussian Processes (GP) with MLE and Bootstrap CIs (MLE GP), and GP with MLE, but
with Bayes estimates and Bayesian Credible Sets for Tj given in Eqs. (3.46) and (3.47)
(MLE BGP). Discussions of MARS, ACOSSO, RF, GBM, and GP are given in Sect. 3 of
this presentation, and similar discussions of REG, QREG, GAMs, and RPART are given in
[12]. Two of the meta-models described in [12], local regression and projection pursuit re-
gression, are not considered here because of their generally poor performance as described
in [56]. Also, rank regression is not used here because it is not capable of producing pre-
dictions at new x values, which is necessary for calculation of T̂j . All of the meta-models
considered were constructed using the CompModSA R package described in Appendix A.

To evaluate the various models, we generate 100 random samples (realizations) each
with a sample size of n = 300. For each of the 100 samples we evaluate the model at
the n sample points to obtain the three outputs. We then construct point estimates and
bootstrap confidence interval estimates for the Tj given by each of the above methods for
each sample. This allows us to evaluate the “long-run” performance of each approach. We
then consider the effect of varying the sample size in Section 4.4

There are several criteria which we will use to test our procedure for the various meta-
models. A typical measure to use when comparing several possible estimators is the Root
Mean Squared Error (RMSE) of the estimate. The RMSE for an estimate T̂j is given as
{E[(T̂j − Tj)

2]}1/2. In the examples of this section, we can calculate the true value Tj , and
what we actually report is a Monte Carlo estimate of RMSE by taking the average squared
error over the 100 realizations. Let T̂j,k denote the value of T̂j for the kth realization. Then,

R =

√√√√ 1

100

100∑
k=1

(T̂j,k − Tj)2 (4.4)

is the summary measure presented in this section. It is also useful to estimate the standard
deviation of R to know how variable this RMSE estimate is when comparing its value across
meta-models. An estimate of the standard deviation of R can be calculated using a Taylor
approximation

sR =
1

2R
sR2 , (4.5)

where

s2
R2 =

1

99

100∑
k=1

[
(T̂j,k − Tj)

2 −R2
]2

. (4.6)
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Suppose for two meta-models, we are comparing values of R = .10 and R = .15 with
sR = .00 and sR = .01 respectively. Then, the difference between the two R values is
probably significant in the sense that this difference is larger than a couple of standard
error units. However, if the standard errors were sR = .04 and sR = .05 respectively, then
we would be hesitant to say that the two values of R = .10 and R = .15 represent any real
difference in RMSE. Also, keep in mind when comparing results that R is not necessarily
comparable across differing values of the Tj . For instance, it would usually be considered
a bigger error for T̂j to be off by 0.10 when Tj = 0.02 than it would be if Tj = 0.70.

We also calculate the coverage and the average length of 95% bootstrap confidence
intervals calculated using the bootstrap approach described in Section 2.3. Let the 95% CI
for Tj for the kth realization be denoted (T̂j,k,L, T̂j,k,U). Then,

C =
1

100

100∑
k=1

I(T̂j,k,L,T̂j,k,U )(Tj) (4.7)

L =
1

100

100∑
k=1

(T̂j,k,U − T̂j,k,L) (4.8)

define the two indicated summary measures, where IA(x) is the indicator function defined
by IA(x) = 1 if x ∈ A and 0 otherwise. Standard errors for C and L can be defined as

sC =

√
C(1− C)

100
(4.9)

sL =

√√√√ 1

(100)(99)

100∑
k=1

(T̂j,k,U − T̂j,k,L − L)2 (4.10)

since C and L are a proportion and a sample mean, respectively. These standard errors can
be used in the same manner as sR when comparing coverages and average CI length across
meta-models. We present the preceding summary measures of for each input variable for
all of the meta-models listed above for each of the 3 outputs defined in Eqs. (4.1) - (4.3).

4.1 Output y1

The first output is monotonic across each of the inputs. What makes this SA difficult
however is the substantial interaction between x1 and x2 as can be seen in Figure 1.

Figure 2 summarizes the results for the 100 analyses of y1 performed with different
meta-models and samples of size n = 300. Each panel is a boxplot of the resultant 100
T̂j , j = 1, . . . , 10, obtained by using a specific meta-model. Specific details of the boxplot
construction used here are given on p. 62, [58]. Dashed lines are drawn at the corresponding
true Tj values for reference. Here, we see that each meta-model does well to estimate
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Figure 1. Output y1 plotted against inputs x1 and x2.
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the Tj for the unimportant inputs (x3-x10), with the exception of MLE BGP. However,
some methods show considerable biases in the T̂j estimator for the important inputs. For
instance, GAM cannot model the important interaction between x1 and x2 in this example
and, as a result, it underestimates the total effect for both inputs. RPART has a systematic
upward bias for T̂2. RF has a substantial downward bias for T̂1. GBM has a downward
bias for T̂1 and an upward bias for T̂2. QREG also has a slight downward bias for T̂1.
MARS, ACOSSO, MLE GP, and MLE BGP, all have distributions for T̂1 and T̂2 centered
near the corresponding true values. In addition MARS and ACOSSO have T̂j distributions
for uninformative variables that are concentrated around 0, with small variability. The
T̂j distributions for uninformative variables for MLE GP are concentrated at 0, but with
more variability than those for MARS and ACOSSO. Lastly, MLE BGP has a substantial
upward bias for the T̂j of the uninformative variables. REG is not included in Figure 2
for convenience of presentation since it is not competitive with the other methods on these
examples as seen in Table 1.

Table 1 further summarizes the results of estimating Tj for output y1. The true Tj for
each input are given in the first column for perspective. The last row of the results for each
meta-model contains the averages of the summary measures across all of the important
input variables. For this presentation, we define an input to be important with respect to a
particular output if Tj > .10. Thus, the last row gives an overall summary of how well the
meta-model performed to estimate the effect of the important inputs. This makes it easier
to compare one meta-model to another.
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Figure 2. Boxplots of the T̂j for each of the meta-models for
the output y1 (Boxplot properties: box extends to first and third
quartiles, Q1 and Q3, respectively; bar and whisker extend to Q1−
1.5 × IQR and Q3 + 1.5 × IQR, respectively, where IQR is
the inter-quartile range; Outliers represented as individual points;
Median represented by vertical bar). Dashed lines are drawn at the
corresponding true values of Tj for reference.
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Table 1. Results for y1 with 100 samples of size n = 300.
blah

Vara Tj
b RMSEc Coverd Lengthe Var Tj RMSE Cover Length

REG QREG
x1 0.48 0.17 (0.01) 0.00 (0.00) 0.15 (0.00) x1 0.48 0.04 (0.00) 0.66 (0.08) 0.10 (0.00)
x2 0.74 0.07 (0.00) 0.80 (0.07) 0.15 (0.00) x2 0.74 0.03 (0.00) 0.91 (0.05) 0.10 (0.00)
x3 0.00 0.00 (0.00) 0.97 (0.03) 0.02 (0.00) x3 0.00 0.00 (0.00) 0.97 (0.03) 0.02 (0.00)
x4 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00) x4 0.00 0.01 (0.00) 0.97 (0.03) 0.02 (0.00)
x5 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00) x5 0.00 0.00 (0.00) 0.97 (0.03) 0.02 (0.00)
x6 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00) x6 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00)
x7 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00) x7 0.00 0.00 (0.00) 1.00 (0.00) 0.01 (0.00)
x8 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00) x8 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00)
x9 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00) x9 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00)
x10 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00) x10 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00)
avg.f 0.12 (0.03) 0.40 (0.28) 0.15 (0.00) avg. 0.04 (0.00) 0.79 (0.09) 0.10 (0.00)

GAM RPART
x1 0.48 0.16 (0.01) 0.00 (0.00) 0.15 (0.00) x1 0.48 0.03 (0.00) 0.91 (0.05) 0.11 (0.00)
x2 0.74 0.09 (0.01) 0.06 (0.04) 0.15 (0.00) x2 0.74 0.05 (0.00) 0.69 (0.08) 0.10 (0.00)
x3 0.00 0.01 (0.00) 1.00 (0.00) 0.04 (0.00) x3 0.00 0.00 (0.00) 1.00 (0.00) 0.04 (0.00)
x4 0.00 0.00 (0.00) 1.00 (0.00) 0.04 (0.00) x4 0.00 0.00 (0.00) 1.00 (0.00) 0.04 (0.00)
x5 0.00 0.01 (0.00) 0.94 (0.04) 0.03 (0.00) x5 0.00 0.00 (0.00) 1.00 (0.00) 0.04 (0.00)
x6 0.00 0.00 (0.00) 1.00 (0.00) 0.03 (0.00) x6 0.00 0.00 (0.00) 1.00 (0.00) 0.04 (0.00)
x7 0.00 0.00 (0.00) 0.94 (0.04) 0.03 (0.00) x7 0.00 0.00 (0.00) 1.00 (0.00) 0.04 (0.00)
x8 0.00 0.00 (0.00) 0.97 (0.03) 0.02 (0.00) x8 0.00 0.00 (0.00) 1.00 (0.00) 0.04 (0.00)
x9 0.00 0.00 (0.00) 0.91 (0.05) 0.02 (0.00) x9 0.00 0.00 (0.00) 1.00 (0.00) 0.04 (0.00)
x10 0.00 0.01 (0.00) 0.83 (0.06) 0.03 (0.00) x10 0.00 0.00 (0.00) 1.00 (0.00) 0.04 (0.00)
avg. 0.13 (0.02) 0.03 (0.02) 0.15 (0.00) avg. 0.04 (0.01) 0.80 (0.08) 0.11 (0.01)

MARS ACOSSO
x1 0.48 0.03 (0.00) 0.97 (0.03) 0.11 (0.00) x1 0.48 0.02 (0.00) 0.86 (0.06) 0.10 (0.00)
x2 0.74 0.02 (0.00) 0.94 (0.04) 0.11 (0.01) x2 0.74 0.02 (0.00) 0.91 (0.05) 0.11 (0.00)
x3 0.00 0.02 (0.00) 0.97 (0.03) 0.08 (0.00) x3 0.00 0.01 (0.00) 1.00 (0.00) 0.03 (0.00)
x4 0.00 0.01 (0.00) 0.94 (0.04) 0.07 (0.00) x4 0.00 0.01 (0.00) 0.97 (0.03) 0.04 (0.00)
x5 0.00 0.01 (0.00) 0.97 (0.03) 0.07 (0.00) x5 0.00 0.01 (0.00) 0.97 (0.03) 0.04 (0.00)
x6 0.00 0.01 (0.00) 0.91 (0.05) 0.08 (0.00) x6 0.00 0.01 (0.00) 0.94 (0.04) 0.04 (0.00)
x7 0.00 0.02 (0.00) 1.00 (0.00) 0.08 (0.00) x7 0.00 0.01 (0.00) 0.97 (0.03) 0.04 (0.00)
x8 0.00 0.01 (0.00) 0.97 (0.03) 0.08 (0.00) x8 0.00 0.01 (0.00) 0.94 (0.04) 0.04 (0.00)
x9 0.00 0.01 (0.00) 0.97 (0.03) 0.08 (0.00) x9 0.00 0.01 (0.00) 1.00 (0.00) 0.04 (0.00)
x10 0.00 0.02 (0.00) 0.94 (0.04) 0.08 (0.00) x10 0.00 0.01 (0.00) 0.97 (0.03) 0.04 (0.00)
avg. 0.02 (0.00) 0.96 (0.01) 0.11 (0.00) avg. 0.02 (0.00) 0.89 (0.02) 0.10 (0.00)

Random Forest GBM
x1 0.48 0.15 (0.01) 0.71 (0.08) 0.17 (0.00) x1 0.48 0.08 (0.01) 1.00 (0.00) 0.26 (0.01)
x2 0.74 0.04 (0.00) 0.94 (0.04) 0.17 (0.00) x2 0.74 0.07 (0.00) 0.83 (0.06) 0.20 (0.01)
x3 0.00 0.02 (0.00) 0.86 (0.06) 0.06 (0.00) x3 0.00 0.02 (0.00) 0.97 (0.03) 0.08 (0.00)
x4 0.00 0.02 (0.00) 0.94 (0.04) 0.06 (0.00) x4 0.00 0.02 (0.00) 0.97 (0.03) 0.08 (0.00)
x5 0.00 0.02 (0.00) 0.91 (0.05) 0.06 (0.00) x5 0.00 0.01 (0.00) 0.97 (0.03) 0.08 (0.00)
x6 0.00 0.02 (0.00) 0.86 (0.06) 0.06 (0.00) x6 0.00 0.02 (0.00) 0.91 (0.05) 0.08 (0.00)
x7 0.00 0.02 (0.00) 0.89 (0.05) 0.06 (0.00) x7 0.00 0.02 (0.00) 0.97 (0.03) 0.09 (0.00)
x8 0.00 0.02 (0.00) 0.94 (0.04) 0.06 (0.00) x8 0.00 0.02 (0.00) 0.94 (0.04) 0.08 (0.00)
x9 0.00 0.02 (0.00) 0.89 (0.05) 0.06 (0.00) x9 0.00 0.02 (0.00) 0.94 (0.04) 0.08 (0.00)
x10 0.00 0.02 (0.00) 0.89 (0.05) 0.06 (0.00) x10 0.00 0.02 (0.00) 1.00 (0.00) 0.09 (0.00)
avg. 0.10 (0.04) 0.83 (0.08) 0.17 (0.00) avg. 0.07 (0.00) 0.91 (0.06) 0.23 (0.02)
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Table 1. Results for y1 with 100 samples of size n = 300.
blah

Var Tj RMSE Cover Length Var Tj RMSE Cover Length
MLE GP MLE BGP

x1 0.48 0.03 (0.00) 0.89 (0.05) 0.13 (0.00) x1 0.48 0.03 (0.00) 1.00 (0.00) 0.20 (0.00)
x2 0.74 0.03 (0.00) 0.77 (0.07) 0.12 (0.00) x2 0.74 0.03 (0.00) 1.00 (0.00) 0.20 (0.01)
x3 0.00 0.03 (0.00) 0.83 (0.06) 0.08 (0.00) x3 0.00 0.05 (0.00) 1.00 (0.00) 0.18 (0.01)
x4 0.00 0.02 (0.00) 0.89 (0.05) 0.09 (0.00) x4 0.00 0.05 (0.00) 1.00 (0.00) 0.18 (0.01)
x5 0.00 0.02 (0.00) 0.94 (0.04) 0.10 (0.00) x5 0.00 0.06 (0.00) 1.00 (0.00) 0.18 (0.01)
x6 0.00 0.02 (0.00) 0.91 (0.05) 0.09 (0.00) x6 0.00 0.05 (0.00) 1.00 (0.00) 0.18 (0.01)
x7 0.00 0.02 (0.00) 0.97 (0.03) 0.10 (0.00) x7 0.00 0.05 (0.00) 1.00 (0.00) 0.17 (0.01)
x8 0.00 0.02 (0.00) 0.94 (0.04) 0.09 (0.00) x8 0.00 0.05 (0.00) 1.00 (0.00) 0.18 (0.01)
x9 0.00 0.02 (0.00) 0.94 (0.04) 0.10 (0.00) x9 0.00 0.06 (0.00) 1.00 (0.00) 0.19 (0.01)
x10 0.00 0.03 (0.00) 0.89 (0.05) 0.09 (0.00) x10 0.00 0.05 (0.00) 1.00 (0.00) 0.19 (0.01)
avg. 0.03 (0.00) 0.83 (0.04) 0.12 (0.00) avg. 0.03 (0.00) 1.00 (0.00) 0.20 (0.00)

blah
a Input variable.
b True value of Tj .
c Monte Carlo approximation of the RMSE of T̂j as defined in Eq. (4.4) for the corresponding
c input and meta-model. The estimated standard deviation of the RMSE as defined in Eq. (4.5)
c is given in parantheses.
d Coverage as defined in Eq. (4.7) of the CI’s produced for Tj for the corresponding input and
d meta-model. The estimated standard deviation of Coverage is given in parantheses.
e Length as defined in Eq. (4.8) of the CI’s produced for Tj for the corresponding input and
e meta-model. The estimated standard deviation of Length is given in parantheses.
f Average value of each column using only the inputs with Tj ≥ 0.1.

REG has a large RMSE (0.17) for estimating the total variance of x1. The 95% CI
for T1 also has 0% coverage. This is due the inability on the part of linear regression to
model the curvature in y1 across x1 and also the interaction effect between x1 and x2. All
three examples are nonlinear and we do not expect REG to perform well, but rather to
serve as a baseline for how much improvement can be made with the use of more flexible
meta-models. For example, QREG has a much better RMSE for T1 and a coverage of 0.66
which is still lower than the nominal level of 0.95. GAM also struggles a bit as indicated
by RMSE and coverage in this example because of GAM’s inability to model the important
interaction between x1 and x2. RPART does about as well as QREG in this example with
small RMSE and also has good coverage for the CIs with the exception of a coverage of
0.69 for T2. MARS does very well in terms of RMSE and coverage for the first two inputs.
However it has somewhat larger error and coverages lower than 0.95 for the unimportant
input variables. MARS seems to be frequently estimating the Tj = 0 to be greater than
zero in this example.

ACOSSO and MARS are two of the best methods for this example with the smallest
RMSE for all of the inputs, coverages close to the nominal level, and also small average CI
lengths. ACOSSO has a very good CI coverages in general. The coverage for the ACOSSO
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T1 CI is 0.86, while all of the MARS CIs have coverages closer to 0.95. However, the
ACOSSO CIs are all somewhat narrower (shorter average length) than those from MARS,
especially for the uninformative variables.

RF has some difficulty relative to the other methods on this example. It has RMSE and
coverages for T1 and T2 that are much better than REG, but not nearly as good as other
methods. GBM seems to perform very similarly to RF but with better coverage on the T1

CIs while the coverage for T2 is worse, even though the average CI length for T2 is quite
big (0.20).

The results for MLE GP are similar to ACOSSO and MARS in that the RMSE and the
average CI lengths are small compared to the other methods . However the coverages for
T1 (0.89) and particularly T2 (0.77) are not as high as for some of the other methods. MLE
BGP has low RMSE for T1 and T2 as well, but slightly higher RMSE for the uninformative
variables. The coverages are very high (1.00) for all Tj’s but this is not necessarily good
since the CI length is large (near 0.20) for all of the CIs.

4.2 Output y2

The second output is the non-monotonic Sobol g-function. Here, there is substantial non-
linearity and interaction; see Figure 3.

Figure 4 displays the boxplots for each meta model of the T̂j distributions, j = 1, . . . , 10,
for the output y2. Dashed lines are drawn at the corresponding true Tj values for reference.
None of the meta-models estimate all of the Tj without bias, although clearly some are bet-
ter than others. QREG has reasonable performance overall. It has a downward bias for T̂1

and T̂2, but the other T̂j are nicely centered around the corresponding Tj lines. GAM also
has downward bias for T̂1 and T̂2 (likely because of the interactions involved here), as well
as a slight bias for T̂3, but performs well for the other T̂j . RPART has a substantial upward
bias for T̂1 but is close to Tj with the other T̂j . However, RPART has much more variability
in the T̂j for j > 4 than many of the other methods (e.g. ACOSSO, RF, GBM, MLE GP).
MARS has reasonable performance overall, especially for T̂2, T̂3, and T̂4. However, T̂1 is
biased low with substantial variability, and the T̂j for j > 4 have more variability than for
some of the other methods. ACOSSO has good performance in general; T̂1, T̂2, and T̂3 are
slightly downward biased, but are close to the true Tj values with little variability. Also, the
T̂j for j > 4 are very tightly centered around the true values. RF has a moderate bias for
T̂1, T̂2, and T̂3, and also has the T̂j for j > 4 very tightly centered around the true values.
GBM has very substantial biases for T̂1, T̂2, and T̂3. MLE GP has good performance for T̂1

and T̂2 but the values for T̂3 are highly variable and the values for T̂4 are also biased low.
MLE BGP has a large bias problem for all T̂j .

Additional analyses of the results for y2 are summarized in Table 2. REG has substan-
tial difficulty with this example as y2 is highly nonlinear. However, QREG does very well
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Figure 3. Plot of output y2 against inputs x1 and x2 with other
inputs fixed at xj = 0.5 for j = 3, . . . , 10.

46



●

●●● ●●●

● ●●●

●●

●

●●●●

x1
x2

x3
x4

x5
x6

x7
x8

x9
x1

0

0.0 0.2 0.4 0.6 0.8 1.0

T1T2T3T4

QREG

●

●

● ●●●●●

●● ●●●●●● ●

●●●●●●●●●

●●●● ●●● ●●

● ●●●●● ●●

x1
x2

x3
x4

x5
x6

x7
x8

x9
x1

0
0.0 0.2 0.4 0.6 0.8 1.0

T1T2T3T4

GAM

●

●

●●●

●

● ●●

x1
x2

x3
x4

x5
x6

x7
x8

x9
x1

0

0.0 0.2 0.4 0.6 0.8 1.0

T1T2T3T4

RPART

●

●

●

●●

●

●

x1
x2

x3
x4

x5
x6

x7
x8

x9
x1

0

0.0 0.2 0.4 0.6 0.8 1.0

T1T2T3T4

MARS

●

●●

●●

●

x1
x2

x3
x4

x5
x6

x7
x8

x9
x1

0

0.0 0.2 0.4 0.6 0.8 1.0

T1T2T3T4

ACOSSO

●

●●

●

●

●●

●

x1
x2

x3
x4

x5
x6

x7
x8

x9
x1

0

0.0 0.2 0.4 0.6 0.8 1.0

T1T2T3T4

RF

●

●●

●●

●

●

●●●

●●●

x1
x2

x3
x4

x5
x6

x7
x8

x9
x1

0

0.0 0.2 0.4 0.6 0.8 1.0

T1T2T3T4

GBM

●

●

●●●

●

●

x1
x2

x3
x4

x5
x6

x7
x8

x9
x1

0

0.0 0.2 0.4 0.6 0.8 1.0

T1T2T3T4

MLE GP

●

●

●●

●

x1
x2

x3
x4

x5
x6

x7
x8

x9
x1

0

0.0 0.2 0.4 0.6 0.8 1.0

T1T2T3T4

MLE BGP

Figure 4. Boxplots of the T̂j for each of the meta-models for the
output y2 (Boxplot properties same as in Figure 4). Dashed lines
are drawn at the corresponding true values of Tj for reference.
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in terms of RMSE. The coverage for T1 and T2 is only 0.73 and 0.76, respectively, but the
coverages for the other inputs are near the nominal level. This performance is compara-
ble to some of the other methods with good performance on this example such as GAM,
MARS, ACOSSO, and MLE GP.
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Table 2. Results for y2 with 100 samples of size n = 300.a
blah

Var Tj RMSE Cover Length Var Tj RMSE Cover Length
REG QREG

x1 0.73 0.66 (0.02) 0.36 (0.08) 0.58 (0.06) x1 0.73 0.08 (0.01) 0.73 (0.08) 0.19 (0.00)
x2 0.22 0.29 (0.04) 0.97 (0.03) 0.58 (0.05) x2 0.22 0.05 (0.00) 0.76 (0.08) 0.15 (0.00)
x3 0.10 0.24 (0.04) 1.00 (0.00) 0.67 (0.05) x3 0.10 0.03 (0.00) 0.88 (0.06) 0.12 (0.00)
x4 0.04 0.22 (0.07) 0.97 (0.03) 0.57 (0.05) x4 0.04 0.03 (0.00) 0.85 (0.06) 0.09 (0.01)
x5 0.01 0.29 (0.07) 0.94 (0.04) 0.58 (0.05) x5 0.01 0.02 (0.00) 0.94 (0.04) 0.05 (0.01)
x6 0.00 0.20 (0.07) 1.00 (0.00) 0.51 (0.04) x6 0.00 0.02 (0.00) 0.97 (0.03) 0.05 (0.00)
x7 0.00 0.08 (0.04) 0.97 (0.03) 0.46 (0.04) x7 0.00 0.01 (0.00) 0.91 (0.05) 0.04 (0.00)
x8 0.00 0.34 (0.08) 0.94 (0.04) 0.60 (0.05) x8 0.00 0.01 (0.00) 0.91 (0.05) 0.03 (0.00)
x9 0.00 0.34 (0.08) 0.97 (0.03) 0.54 (0.05) x9 0.00 0.01 (0.00) 0.94 (0.04) 0.04 (0.00)
x10 0.00 0.16 (0.05) 1.00 (0.00) 0.53 (0.05) x10 0.00 0.01 (0.00) 0.97 (0.03) 0.05 (0.00)
avg. 0.40 (0.08) 0.78 (0.12) 0.61 (0.02) avg. 0.06 (0.01) 0.79 (0.03) 0.15 (0.01)

GAM RPART
x1 0.73 0.06 (0.01) 0.94 (0.04) 0.19 (0.00) x1 0.73 0.15 (0.01) 0.06 (0.04) 0.12 (0.00)
x2 0.22 0.06 (0.01) 0.73 (0.08) 0.15 (0.00) x2 0.22 0.09 (0.01) 0.64 (0.08) 0.21 (0.01)
x3 0.10 0.04 (0.00) 0.64 (0.08) 0.10 (0.00) x3 0.10 0.06 (0.01) 0.79 (0.07) 0.15 (0.01)
x4 0.04 0.02 (0.00) 1.00 (0.00) 0.08 (0.00) x4 0.04 0.05 (0.01) 0.88 (0.06) 0.12 (0.01)
x5 0.01 0.01 (0.00) 0.97 (0.03) 0.06 (0.00) x5 0.01 0.04 (0.01) 0.91 (0.05) 0.12 (0.01)
x6 0.00 0.01 (0.00) 0.91 (0.05) 0.04 (0.00) x6 0.00 0.05 (0.01) 0.79 (0.07) 0.12 (0.01)
x7 0.00 0.01 (0.00) 0.94 (0.04) 0.04 (0.00) x7 0.00 0.04 (0.00) 0.94 (0.04) 0.12 (0.00)
x8 0.00 0.01 (0.00) 0.85 (0.06) 0.03 (0.00) x8 0.00 0.04 (0.00) 1.00 (0.00) 0.11 (0.00)
x9 0.00 0.01 (0.00) 0.88 (0.06) 0.03 (0.00) x9 0.00 0.05 (0.01) 0.88 (0.06) 0.12 (0.01)
x10 0.00 0.01 (0.00) 0.91 (0.05) 0.04 (0.00) x10 0.00 0.05 (0.01) 0.91 (0.05) 0.11 (0.00)
avg. 0.06 (0.00) 0.77 (0.05) 0.15 (0.01) avg. 0.10 (0.02) 0.50 (0.13) 0.16 (0.02)

MARS ACOSSO
x1 0.73 0.11 (0.01) 0.85 (0.06) 0.26 (0.01) x1 0.73 0.07 (0.01) 0.79 (0.07) 0.19 (0.01)
x2 0.22 0.05 (0.01) 0.85 (0.06) 0.21 (0.01) x2 0.22 0.06 (0.01) 0.88 (0.06) 0.17 (0.00)
x3 0.10 0.05 (0.00) 0.88 (0.06) 0.18 (0.01) x3 0.10 0.04 (0.00) 0.91 (0.05) 0.14 (0.01)
x4 0.04 0.04 (0.00) 1.00 (0.00) 0.16 (0.01) x4 0.04 0.02 (0.00) 0.79 (0.07) 0.08 (0.01)
x5 0.01 0.04 (0.00) 0.97 (0.03) 0.13 (0.01) x5 0.01 0.01 (0.00) 1.00 (0.00) 0.05 (0.00)
x6 0.00 0.04 (0.01) 0.97 (0.03) 0.13 (0.01) x6 0.00 0.02 (0.00) 0.94 (0.04) 0.05 (0.00)
x7 0.00 0.04 (0.01) 0.94 (0.04) 0.12 (0.01) x7 0.00 0.01 (0.00) 0.94 (0.04) 0.04 (0.00)
x8 0.00 0.03 (0.00) 0.97 (0.03) 0.14 (0.02) x8 0.00 0.01 (0.00) 0.97 (0.03) 0.04 (0.00)
x9 0.00 0.04 (0.00) 0.97 (0.03) 0.15 (0.02) x9 0.00 0.01 (0.00) 0.94 (0.04) 0.04 (0.00)
x10 0.00 0.03 (0.00) 1.00 (0.00) 0.12 (0.01) x10 0.00 0.01 (0.00) 1.00 (0.00) 0.04 (0.00)
avg. 0.07 (0.01) 0.86 (0.01) 0.22 (0.01) avg. 0.05 (0.00) 0.86 (0.02) 0.17 (0.01)

Random Forest GBM
x1 0.73 0.06 (0.01) 0.88 (0.06) 0.31 (0.01) x1 0.73 0.20 (0.01) 0.64 (0.08) 0.31 (0.02)
x2 0.22 0.10 (0.01) 0.76 (0.08) 0.25 (0.01) x2 0.22 0.16 (0.01) 0.30 (0.08) 0.18 (0.01)
x3 0.10 0.05 (0.00) 0.85 (0.06) 0.17 (0.01) x3 0.10 0.09 (0.00) 0.30 (0.08) 0.09 (0.01)
x4 0.04 0.02 (0.00) 1.00 (0.00) 0.14 (0.01) x4 0.04 0.03 (0.00) 1.00 (0.00) 0.09 (0.00)
x5 0.01 0.02 (0.00) 1.00 (0.00) 0.12 (0.01) x5 0.01 0.01 (0.00) 1.00 (0.00) 0.08 (0.00)
x6 0.00 0.02 (0.00) 1.00 (0.00) 0.11 (0.00) x6 0.00 0.01 (0.00) 1.00 (0.00) 0.08 (0.01)
x7 0.00 0.02 (0.00) 1.00 (0.00) 0.11 (0.00) x7 0.00 0.01 (0.00) 1.00 (0.00) 0.07 (0.00)
x8 0.00 0.02 (0.00) 1.00 (0.00) 0.11 (0.01) x8 0.00 0.01 (0.00) 1.00 (0.00) 0.07 (0.00)
x9 0.00 0.02 (0.00) 1.00 (0.00) 0.12 (0.01) x9 0.00 0.01 (0.00) 1.00 (0.00) 0.08 (0.00)
x10 0.00 0.02 (0.00) 1.00 (0.00) 0.11 (0.00) x10 0.00 0.01 (0.00) 1.00 (0.00) 0.08 (0.00)
avg. 0.07 (0.01) 0.83 (0.02) 0.24 (0.02) avg. 0.15 (0.02) 0.41 (0.06) 0.19 (0.04)
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Table 2. Results for y2 with 100 samples of size n = 300.a
blah

Var Tj RMSE Cover Length Var Tj RMSE Cover Length
MLE GP MLE BGP

x1 0.73 0.07 (0.01) 0.79 (0.07) 0.18 (0.01) x1 0.73 0.12 (0.01) 0.21 (0.07) 0.15 (0.00)
x2 0.22 0.06 (0.01) 0.88 (0.06) 0.21 (0.01) x2 0.22 0.32 (0.01) 0.00 (0.00) 0.19 (0.01)
x3 0.10 0.07 (0.00) 0.58 (0.09) 0.12 (0.01) x3 0.10 0.32 (0.01) 0.00 (0.00) 0.21 (0.01)
x4 0.04 0.03 (0.00) 0.94 (0.04) 0.08 (0.01) x4 0.04 0.34 (0.01) 0.00 (0.00) 0.20 (0.01)
x5 0.01 0.01 (0.00) 1.00 (0.00) 0.06 (0.00) x5 0.01 0.36 (0.01) 0.00 (0.00) 0.22 (0.00)
x6 0.00 0.01 (0.00) 0.91 (0.05) 0.05 (0.00) x6 0.00 0.37 (0.01) 0.00 (0.00) 0.21 (0.01)
x7 0.00 0.01 (0.00) 0.94 (0.04) 0.05 (0.00) x7 0.00 0.38 (0.01) 0.00 (0.00) 0.21 (0.01)
x8 0.00 0.01 (0.00) 0.94 (0.04) 0.06 (0.00) x8 0.00 0.37 (0.01) 0.00 (0.00) 0.22 (0.01)
x9 0.00 0.01 (0.00) 0.97 (0.03) 0.06 (0.00) x9 0.00 0.37 (0.01) 0.00 (0.00) 0.22 (0.01)
x10 0.00 0.01 (0.00) 0.94 (0.04) 0.05 (0.00) x10 0.00 0.37 (0.01) 0.00 (0.00) 0.23 (0.01)
avg. 0.07 (0.00) 0.75 (0.05) 0.17 (0.02) avg. 0.25 (0.04) 0.07 (0.04) 0.18 (0.01)

blah
a Table structure same as in Table 1.

GAM is also one of the best methods on this example. It has the second smallest RMSE
averaged across the important inputs (0.06 tied with QREG). It also has good coverages for
all of the inputs with the exception of T2 and T3. It appears that some of the interactions
involving x2 and x3 may be biasing these CIs.

RPART is not nearly as effective in this example as in the previous example. The
average RMSE (over the important inputs) for RPART is almost 2 times that of QREG,
GAM and ACOSSO. RPART also has very poor coverage for T1 (0.06).

MARS does fairly well again relative to the other methods in this case. It has a little
higher RMSE when estimating T1 and the uninformative Tj’s than some of the other meth-
ods. However, the coverages for the CIs from MARS are again the best overall as they are
all above 0.85.

ACOSSO also has very good overall performance again. It has the lowest average
RMSE for the important variables once again. The coverages are also good in general
although they are somewhat low for T1 (0.79) and T4 (0.79). The interval lengths are also
smaller than those for MARS and similar to the lengths for QREG and GAM.

RF has much better performance in this example compared to the previous example.
Specifically, RF gives results similar to MARS for RMSE and coverage, but also has no-
tably larger CI lengths. GBM gives disappointing results for RMSE (average on important
variables of 3 times that for ACOSSO) and coverage (as low as 0.30 for T2 and T3), even
though the CI lengths are large relative to other methods.

MLE GP again has good performance for estimating the Tj . It has RMSE and CI lengths
comparable to the other top methods on this example (QREG, GAM, MARS, ACOSSO).
MLE GP also has reasonable coverage for all Tj but T3 (0.58). MLE BGP has very poor
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performance on this example with RMSE for uninformative variables 30 times higher than
those for MLE GP. This is a case where it is evident that the mean of a function of a random
variable is not equal to that function evaluated at the mean. This is essentially the differ-
ence between the Tj estimates for MLE GP (T̂j from Eq. (2.1)) and MLE BGP (T̃j from
Eq. (3.46)). MLE BGP evaluates Tj at several posterior realizations of f , then averages
these Tj to obtain T̃j . MLE GP evaluates Tj at f̂ (the posterior average value of f ). In this
example, the posterior mean for f shows very little change across the uninformative vari-
ables giving T̂j near 0 for most of the simulations. However, the posterior distribution of f
has a fair amount of fluctuation around 0 in the amount of signal across uninformative vari-
ables, leading to T̃j’s substantially different from 0. This example is a fairly pathological
case for the Bayes framework since the function f2 is a “V” as seen in Figure 3. The prior
distribution imposed on f by the GP (with powered exponential covariance) is stationary,
meaning the unconditional variance is the same in all regions of the domain. Thus, the GP
prior assumes a similar amount of continuity and change over the entire domain, making it
a poor choice for this situation.

4.3 Output y3

The last analytic output is the non-monotonic Ishigami function; see Figures 5 and 6. Here,
the difficulty in estimation lies in the periodic nature of the relationship between y3 and x2

and in the lack of any main effect due to x3.

Figure 7 displays the boxplots for each meta model of the T̂j distributions, j = 1, . . . , 10,
for the output y3. These plots indicate the difficulty that many of the meta-models have with
this output. The QREG plot makes it clear that QREG is not capable of modeling this out-
put and similarly for GAM. RPART has reasonable performance for T̂1, T̂2 and the T̂j for
the unimportant inputs (j > 3), but the estimates for T̂3 are biased high. MARS has very
good performance overall on this output. MARS has very tightly centered distributions for
T̂j around the true Tj , but there are also several outlying values (e.g., notice the two very
low points T̂1 = 0.0 and T̂1 = 0.05) indicating that MARS estimates can be somewhat
unstable. ACOSSO also has good performance, but it too has several outlying T̂j (one very
high T̂1 and one very low T̂2). RF and GBM both have a sizable bias for T̂1, T̂2 and T̂3.
MLE GP has performance that is similar to ACOSSO, but the outlying T̂j are not as ex-
treme. MLE BGP is similar to MLE GP for T̂1, T̂2 and T̂3 but has upward bias with many
outlying values of T̂j for the unimportant variables (j > 3).

The additional analyses for y3 are presented in Table 3. This proved to be the most
complex and challenging test problem for many of the methods. REG has high RMSE as
would be expected, but QREG has average RMSE nearly as high in this case (0.28) and
very low coverages (0.06 for T2). This is due to the inability of QREG to model the periodic
behavior that is evident across x2 (Figure 6). GAM is better than QREG in terms of average
RMSE but its CI coverages are also very poor in general (0% for T3).
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Figure 5. Plot of output y3 against inputs x1 and x3 with x2 fixed
at 0.5.
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Figure 6. Scatterplots of output y3 against inputs x1, x2, and x3

individually.
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Figure 7. Boxplots of the T̂j for each of the meta-models for the
output y3 (Boxplot properties same as in Figure 4). Dashed lines
are drawn at the corresponding true values of Tj for reference.
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Table 3. Results for y3 with 100 samples of size n = 300.a
blah

Var Tj RMSE Cover Length Var Tj RMSE Cover Length
REG QREG

x1 0.55 0.36 (0.01) 0.11 (0.05) 0.30 (0.02) x1 0.55 0.27 (0.02) 0.31 (0.08) 0.37 (0.01)
x2 0.45 0.44 (0.00) 0.00 (0.00) 0.09 (0.01) x2 0.45 0.35 (0.01) 0.06 (0.04) 0.26 (0.02)
x3 0.24 0.22 (0.00) 0.06 (0.04) 0.11 (0.01) x3 0.24 0.20 (0.01) 0.34 (0.08) 0.20 (0.02)
x4 0.00 0.04 (0.02) 0.97 (0.03) 0.09 (0.01) x4 0.00 0.06 (0.01) 1.00 (0.00) 0.16 (0.01)
x5 0.00 0.02 (0.00) 1.00 (0.00) 0.08 (0.01) x5 0.00 0.05 (0.01) 0.97 (0.03) 0.16 (0.01)
x6 0.00 0.03 (0.01) 1.00 (0.00) 0.08 (0.01) x6 0.00 0.06 (0.02) 0.94 (0.04) 0.15 (0.01)
x7 0.00 0.04 (0.01) 1.00 (0.00) 0.10 (0.01) x7 0.00 0.05 (0.01) 0.97 (0.03) 0.16 (0.01)
x8 0.00 0.02 (0.00) 1.00 (0.00) 0.08 (0.01) x8 0.00 0.02 (0.01) 1.00 (0.00) 0.14 (0.01)
x9 0.00 0.04 (0.01) 0.97 (0.03) 0.09 (0.01) x9 0.00 0.06 (0.02) 0.97 (0.03) 0.15 (0.01)
x10 0.00 0.01 (0.00) 1.00 (0.00) 0.08 (0.01) x10 0.00 0.03 (0.01) 1.00 (0.00) 0.14 (0.01)
avg. 0.34 (0.04) 0.06 (0.02) 0.17 (0.04) avg. 0.28 (0.03) 0.24 (0.05) 0.28 (0.03)

GAM RPART
x1 0.55 0.15 (0.01) 0.09 (0.05) 0.17 (0.01) x1 0.55 0.07 (0.01) 0.80 (0.07) 0.20 (0.00)
x2 0.45 0.12 (0.01) 0.14 (0.06) 0.17 (0.00) x2 0.45 0.08 (0.01) 0.80 (0.07) 0.25 (0.01)
x3 0.24 0.23 (0.00) 0.00 (0.00) 0.05 (0.00) x3 0.24 0.13 (0.01) 0.29 (0.08) 0.20 (0.01)
x4 0.00 0.00 (0.00) 1.00 (0.00) 0.04 (0.00) x4 0.00 0.01 (0.00) 1.00 (0.00) 0.06 (0.00)
x5 0.00 0.00 (0.00) 0.91 (0.05) 0.03 (0.00) x5 0.00 0.02 (0.00) 0.94 (0.04) 0.07 (0.00)
x6 0.00 0.00 (0.00) 0.94 (0.04) 0.02 (0.00) x6 0.00 0.02 (0.00) 0.94 (0.04) 0.06 (0.00)
x7 0.00 0.01 (0.00) 0.91 (0.05) 0.03 (0.00) x7 0.00 0.03 (0.01) 0.86 (0.06) 0.07 (0.00)
x8 0.00 0.01 (0.00) 0.89 (0.05) 0.02 (0.00) x8 0.00 0.02 (0.00) 0.97 (0.03) 0.07 (0.00)
x9 0.00 0.01 (0.00) 0.86 (0.06) 0.02 (0.00) x9 0.00 0.01 (0.00) 1.00 (0.00) 0.06 (0.00)
x10 0.00 0.00 (0.00) 0.91 (0.05) 0.03 (0.00) x10 0.00 0.02 (0.00) 0.94 (0.04) 0.06 (0.00)
avg. 0.17 (0.02) 0.08 (0.02) 0.13 (0.02) avg. 0.09 (0.01) 0.63 (0.10) 0.22 (0.01)

MARS ACOSSO
x1 0.55 0.10 (0.04) 0.89 (0.05) 0.19 (0.01) x1 0.55 0.06 (0.00) 0.74 (0.07) 0.14 (0.00)
x2 0.45 0.09 (0.04) 0.94 (0.04) 0.20 (0.02) x2 0.45 0.05 (0.00) 0.71 (0.08) 0.14 (0.00)
x3 0.24 0.11 (0.05) 0.94 (0.04) 0.17 (0.02) x3 0.24 0.07 (0.00) 0.83 (0.06) 0.11 (0.00)
x4 0.00 0.01 (0.00) 0.97 (0.03) 0.08 (0.02) x4 0.00 0.01 (0.00) 0.97 (0.03) 0.02 (0.00)
x5 0.00 0.01 (0.00) 1.00 (0.00) 0.07 (0.02) x5 0.00 0.00 (0.00) 0.97 (0.03) 0.02 (0.00)
x6 0.00 0.01 (0.00) 1.00 (0.00) 0.08 (0.02) x6 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00)
x7 0.00 0.02 (0.01) 0.94 (0.04) 0.08 (0.02) x7 0.00 0.01 (0.00) 1.00 (0.00) 0.02 (0.00)
x8 0.00 0.04 (0.02) 0.97 (0.03) 0.08 (0.02) x8 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00)
x9 0.00 0.02 (0.00) 0.91 (0.05) 0.07 (0.01) x9 0.00 0.01 (0.00) 0.97 (0.03) 0.02 (0.00)
x10 0.00 0.02 (0.00) 1.00 (0.00) 0.08 (0.02) x10 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00)
avg. 0.10 (0.00) 0.92 (0.01) 0.19 (0.01) avg. 0.06 (0.00) 0.76 (0.02) 0.13 (0.00)

Random Forest GBM
x1 0.55 0.18 (0.01) 0.49 (0.08) 0.21 (0.01) x1 0.55 0.29 (0.01) 0.17 (0.06) 0.28 (0.02)
x2 0.45 0.22 (0.01) 0.43 (0.08) 0.18 (0.01) x2 0.45 0.31 (0.01) 0.17 (0.06) 0.16 (0.02)
x3 0.24 0.14 (0.00) 0.26 (0.07) 0.11 (0.00) x3 0.24 0.09 (0.01) 0.60 (0.08) 0.17 (0.01)
x4 0.00 0.02 (0.00) 0.94 (0.04) 0.08 (0.00) x4 0.00 0.01 (0.00) 1.00 (0.00) 0.08 (0.00)
x5 0.00 0.01 (0.00) 1.00 (0.00) 0.08 (0.00) x5 0.00 0.01 (0.00) 0.97 (0.03) 0.08 (0.00)
x6 0.00 0.02 (0.00) 1.00 (0.00) 0.08 (0.00) x6 0.00 0.01 (0.00) 1.00 (0.00) 0.07 (0.00)
x7 0.00 0.02 (0.00) 0.97 (0.03) 0.08 (0.00) x7 0.00 0.01 (0.00) 0.97 (0.03) 0.07 (0.00)
x8 0.00 0.01 (0.00) 0.94 (0.04) 0.07 (0.00) x8 0.00 0.01 (0.00) 1.00 (0.00) 0.07 (0.00)
x9 0.00 0.01 (0.00) 1.00 (0.00) 0.07 (0.00) x9 0.00 0.01 (0.00) 1.00 (0.00) 0.08 (0.01)
x10 0.00 0.01 (0.00) 1.00 (0.00) 0.07 (0.00) x10 0.00 0.01 (0.00) 1.00 (0.00) 0.08 (0.00)
avg. 0.18 (0.01) 0.39 (0.04) 0.17 (0.02) avg. 0.23 (0.04) 0.31 (0.08) 0.20 (0.02)
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Table 3. Results for y3 with 100 samples of size n = 300.a
blah

Var Tj RMSE Cover Length Var Tj RMSE Cover Length
MLE GP MLE BGP

x1 0.55 0.08 (0.02) 0.83 (0.06) 0.28 (0.01) x1 0.55 0.05 (0.01) 0.91 (0.05) 0.15 (0.00)
x2 0.45 0.08 (0.01) 0.83 (0.06) 0.25 (0.01) x2 0.45 0.12 (0.02) 0.60 (0.08) 0.16 (0.00)
x3 0.24 0.09 (0.02) 0.69 (0.08) 0.21 (0.01) x3 0.24 0.04 (0.01) 0.97 (0.03) 0.16 (0.00)
x4 0.00 0.01 (0.00) 0.89 (0.05) 0.05 (0.00) x4 0.00 0.10 (0.02) 0.86 (0.06) 0.12 (0.01)
x5 0.00 0.01 (0.00) 0.94 (0.04) 0.05 (0.00) x5 0.00 0.10 (0.02) 0.86 (0.06) 0.12 (0.01)
x6 0.00 0.01 (0.00) 0.89 (0.05) 0.05 (0.00) x6 0.00 0.10 (0.02) 0.83 (0.06) 0.12 (0.01)
x7 0.00 0.01 (0.00) 0.94 (0.04) 0.05 (0.00) x7 0.00 0.10 (0.02) 0.83 (0.06) 0.13 (0.01)
x8 0.00 0.01 (0.00) 1.00 (0.00) 0.06 (0.00) x8 0.00 0.10 (0.02) 0.86 (0.06) 0.12 (0.01)
x9 0.00 0.02 (0.01) 0.89 (0.05) 0.06 (0.00) x9 0.00 0.11 (0.02) 0.83 (0.06) 0.13 (0.01)
x10 0.00 0.01 (0.00) 0.94 (0.04) 0.05 (0.00) x10 0.00 0.10 (0.02) 0.86 (0.06) 0.13 (0.01)
avg. 0.08 (0.00) 0.78 (0.03) 0.25 (0.01) avg. 0.07 (0.02) 0.83 (0.07) 0.16 (0.00)

blah
a Table structure same as in Table 1.

RPART is one of the better methods for RMSE and coverages are much better than
GAM or QREG in general, although there is a very low coverage for T3 (0.29).

MARS has RMSE values for the Tj that are slightly higher than the RMSE values for
ACOSSO and MLE GP, but smaller than the RMSE values most other methods. Once
again, the coverage of the CIs produced from MARS are very close to the 95% level for
all of the inputs. MARS is by far the most consistent method for maintaining the nominal
coverages. The CI lengths for MARS are larger than ACOSSO but smaller than those of
MLE GP.

ACOSSO is substantially better than all other methods in terms of RMSE. The coverage
for ACOSSO is below nominal for the important variables (0.74 for T1 0.71 for T2, and 0.83
for T3), but is once again at or above 0.95 for the uninformative variables. The CI lengths
are also the shortest of any method.

RF has high RMSE for the three important variables, but has very low RMSE for the
uninformative inputs. The coverage is also very low for the three important variables.
GBM is again similar to RF in that the estimates and coverages are very good for the
uninformative variables but poor for the important ones.

MLE GP is one of the better methods along with MARS and ACOSSO in this example.
RMSE for the Tj is lower than MARS but higher than ACOSSO in general. The coverages
are reasonable with the exception of that for T3 (0.69). Unfortunately, the CI lengths are
long (0.28 for T1 and 0.25 for T2).

MLE BGP has more success here than in the previous example. It is one of the better
methods with respect to RMSE of Tj for the important variables. However, it again strug-
gles to estimate the Tj for the uninformative variables (RMSE ≥ 0.10 for all uninformative
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inputs). In addition, the coverages are not nearly as good as for other methods (∼ 0.85 for
all of the uninformative inputs).

4.4 Effect of Sample Size

Here we summarize the results obtained when the various methods are applied to the pre-
ceding examples with sample sizes of n = 75, n = 150, and n = 300. The CIs based on the
bootstrap have asymptotically correct coverages under certain regularity conditions (p. 37-
39, [20]). An exact treatment of these conditions for the Tj CIs is beyond the scope of this
presentation. It is, however, necessary that the meta-model used be a consistent estimator
of the true function (i.e., f̂(x) − f(x) converges in probability to 0 for each x). Hence,
we cannot expect the bootstrap CIs to have the correct coverage unless the meta-model
is appropriate and until we have a sufficiently large sample. The purpose of the follow-
ing exercise is to answer the following two questions: (i) What sample size is necessary
for bootstrap CIs to be useful?, and (ii) Are the coverages increasing to the nominal (i.e.
95%) level as sample size increases? The values presented in the following tables for each
method are the averages across input variables of the respective summary statistics.

Table 4 contains the results for output y1 averaged over only the important inputs for the
various sample sizes. We define an input to be important for an output if Tj ≥ 0.1. Notice
that the coverages for REG and QREG actually go down slightly as sample size increases.
This is not surprising since neither of these meta-models is a consistent estimator for the
underlying true function f1 in this case. For instance, the function is not quadratic but the
estimate f̂ from QREG is and the estimate will have less and less variability the larger the
sample size. Hence, with REG and QREG, increasing sample size results in shorter length
intervals around a biased quantity. In fact, we might expect these coverages to decrease to
zero as sample size continues to be increased. However, for practical purposes, QREG is
producing CIs that are useful for all sample sizes considered.

GAM has a similar issue here as well. The true function is not additive, with the result
that a GAM model will always have a bias that does not go away as sample size increases.
MARS and ACOSSO both have good coverage at all sample sizes. Notice that the average
interval length is decreasing for these methods as sample size increases. However, the
RMSE is also decreasing fast enough to allow for the shorter intervals to maintain close to
the 95% coverage. RF does not have coverages as near the nominal level but the coverages
are increasing with sample size. The CI length is also decreasing for RF. For GBM, the
coverage increases to near the nominal level and the CI length decreases as sample size
increases, but not as much as with other methods. MLE GP appears to have an increasing
trend in coverage and decreasing interval width with increasing sample size. However,
the coverage does go down slightly when moving from n = 150 to n = 300. For MLE
BGP, the coverage is quite good at all sample sizes but the CI width does not appear to be
decreasing like the other methods.
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Table 4. Results for y1 averaged across the important inputs with
;;;;;;;;;;;;v various sample sizes.

na RMSEb Coverc Lengthd n RMSE Cover Length
REG QREG

75 0.15 (0.03) 0.70 (0.19) 0.28 (0.00) 75 0.07 (0.01) 0.79 (0.05) 0.18 (0.01)
150 0.13 (0.02) 0.47 (0.22) 0.22 (0.00) 150 0.04 (0.00) 0.92 (0.02) 0.14 (0.00)
300 0.12 (0.03) 0.40 (0.28) 0.15 (0.00) 300 0.04 (0.00) 0.79 (0.09) 0.10 (0.00)

GAM RPART
75 0.16 (0.02) 0.21 (0.05) 0.26 (0.01) 75 0.17 (0.01) 0.62 (0.06) 0.33 (0.03)
150 0.14 (0.01) 0.10 (0.00) 0.20 (0.00) 150 0.05 (0.00) 0.95 (0.00) 0.19 (0.02)
300 0.13 (0.02) 0.03 (0.02) 0.15 (0.00) 300 0.04 (0.01) 0.80 (0.08) 0.11 (0.01)

MARS ACOSSO
75 0.07 (0.01) 0.89 (0.03) 0.32 (0.00) 75 0.05 (0.01) 0.89 (0.00) 0.19 (0.01)
150 0.16 (0.04) 0.97 (0.02) 0.26 (0.00) 150 0.03 (0.00) 0.95 (0.00) 0.13 (0.00)
300 0.02 (0.00) 0.96 (0.01) 0.11 (0.00) 300 0.02 (0.00) 0.89 (0.02) 0.10 (0.00)

Random Forest GBM
75 0.18 (0.06) 0.73 (0.19) 0.43 (0.04) 75 0.22 (0.06) 0.66 (0.16) 0.40 (0.03)
150 0.13 (0.04) 0.79 (0.15) 0.29 (0.01) 150 0.11 (0.02) 0.95 (0.00) 0.35 (0.01)
300 0.10 (0.04) 0.83 (0.08) 0.17 (0.00) 300 0.07 (0.00) 0.91 (0.06) 0.23 (0.02)

MLE GP MLE BGP
75 0.05 (0.00) 0.79 (0.00) 0.16 (0.01) 75 0.05 (0.00) 0.93 (0.03) 0.20 (0.00)
150 0.03 (0.00) 0.87 (0.02) 0.14 (0.00) 150 0.03 (0.00) 1.00 (0.00) 0.20 (0.00)
300 0.03 (0.00) 0.83 (0.04) 0.12 (0.00) 300 0.03 (0.00) 1.00 (0.00) 0.20 (0.00)

blaha Sample size used to generate the data.
b Average across inputs with Tj ≥ 0.10 of the RMSE of T̂j given by the
b corresponding meta-model; estimated standard deviation of this average
b RRMSE given in parantheses. The estimated standard deviation is calculated
b in the same manner as the standard error of a sample mean.
c Average across inputs with Tj ≥ 0.10 of the coverage of CI’s generated by the
c corresponding meta-model; estimated standard deviation of this average
c coverage given in parantheses.
d Average across inputs with Tj ≥ 0.10 of the length of CI’s generated by the
d corresponding meta-model; estimated standard deviation of this average
d length given in parantheses.
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Table 5 contains the results for output y1 averaged over only the unimportant inputs for
the various sample sizes. We define an input to be unimportant for an output if Tj < 0.01.
Notice that important inputs are defined to have Tj > 0.10, which allows some inputs to be
in a grey area where they are neither unimportant nor important. All of the methods seem
to have good coverages at all sample sizes for the unimportant inputs. The CI lengths are
deceasing for most methods, but this decrease is much less dramatic than with CI length
for the important inputs since the CI lengths for the unimportant inputs are generally much
smaller.

Summaries of the results for y2 and the three sample sizes for the important inputs are
presented in Table 6. The CIs based on REG are not useful here. The average length is
greater then 0.5 for each sample size, making these CIs too wide to be informative. Both
GAM and QREG seem to struggle slightly with the interactions involved in this example
as the coverages for both trend downward with increasing sample size. However, with
coverages around 0.80, the CIs from QREG and GAM are still usable. The RMSE and
CI lengths are decreasing with increase in sample size. GAM and QREG have among the
shortest length CIs for any of the methods.

The coverages for RPART decline substantially as sample size is increased from n = 75
to n = 300 (0.70 to 0.50). This is a particularly difficult function for RPART to model
since the “V” shape is not well approximated by piecewise constants. Still, the decreasing
coverage is somewhat unsettling. MARS does not have increasing coverage but it remains
relatively high (≥ 0.85) for all sample sizes and also has decreasing RMSE and CI length as
sample size increases. ACOSSO has increasing coverage as sample size increases n = 75
to n = 300 (0.81 to 0.86). In addition, the RMSE and CI lengths are decreasing and both
become very small for n = 300.

RF has good coverages for all sample sizes but declines a bit as sample size increases
n = 75 to n = 300 (0.92 to 0.83). RMSE and CI lengths are decreasing so that RF appears
to be performing reasonably well. GBM has a substantial drop in coverage with increasing
sample size (0.94 to 0.41). This gives some cause for concern when using GBM for CIs.

MLE GP has low coverage (0.52) at n = 75 but increases to 0.75 by n = 300. Thus,
for larger sample sizes the CIs produced from MLE GP are usable. The RMSE and CI
lengths also decrease significantly with increased sample size. MLE BGP struggles with
this example. Coverages decrease from 0.53 when n = 75 to 0.07 when n = 300. Even
more troubling is that RMSE actually increases with sample size. As previously indicated,
y2 is a very difficult function to model with a stationary prior distribution, which in turn
leads to the poor results. Such behavior is a reason to question the use of this procedure in
practice when there is a chance of sharp changes in the output.

Table 7 gives the results for output y2 averaged over only the unimportant inputs for the
various sample sizes. As in the previous example, the coverages for all of the methods are
quite good, with the exception of MLE BGP, but even this increases with sample size. All of
the methods have CI length decreasing with sample size, which is much more pronounced
here than for y1. This is due to the fact that the signal to noise ratio is much lower in this
example making it harder to identify the uninformative variables at small sample sizes.
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Table 5. Results for y1 averaged across the unimportant inputs
;;;;;;;;;;;;;v with various sample sizes.

na RMSEb Coverc Lengthd n RMSE Cover Length
REG QREG

75 0.01 (0.00) 1.00 (0.00) 0.04 (0.00) 75 0.01 (0.00) 0.98 (0.00) 0.03 (0.00)
150 0.01 (0.00) 1.00 (0.00) 0.03 (0.00) 150 0.00 (0.00) 0.99 (0.00) 0.02 (0.00)
300 0.00 (0.00) 1.00 (0.00) 0.02 (0.00) 300 0.00 (0.00) 0.99 (0.00) 0.02 (0.00)

GAM RPART
75 0.02 (0.00) 0.90 (0.01) 0.06 (0.00) 75 0.01 (0.00) 1.00 (0.00) 0.07 (0.00)
150 0.01 (0.00) 0.95 (0.01) 0.04 (0.00) 150 0.00 (0.00) 0.99 (0.00) 0.05 (0.00)
300 0.01 (0.00) 0.95 (0.01) 0.03 (0.00) 300 0.00 (0.00) 1.00 (0.00) 0.04 (0.00)

MARS ACOSSO
75 0.02 (0.00) 1.00 (0.00) 0.13 (0.00) 75 0.01 (0.00) 0.98 (0.00) 0.04 (0.00)
150 0.06 (0.01) 0.98 (0.00) 0.16 (0.00) 150 0.01 (0.00) 0.99 (0.00) 0.04 (0.00)
300 0.01 (0.00) 0.96 (0.00) 0.08 (0.00) 300 0.01 (0.00) 0.97 (0.00) 0.04 (0.00)

Random Forest GBM
75 0.02 (0.00) 1.00 (0.00) 0.14 (0.00) 75 0.01 (0.00) 0.98 (0.00) 0.09 (0.00)
150 0.02 (0.00) 0.93 (0.01) 0.07 (0.00) 150 0.01 (0.00) 0.97 (0.00) 0.07 (0.00)
300 0.02 (0.00) 0.90 (0.00) 0.06 (0.00) 300 0.02 (0.00) 0.96 (0.00) 0.08 (0.00)

MLE GP MLE BGP
75 0.02 (0.00) 0.91 (0.01) 0.09 (0.00) 75 0.04 (0.00) 1.00 (0.00) 0.17 (0.00)
150 0.02 (0.00) 0.91 (0.01) 0.09 (0.00) 150 0.05 (0.00) 1.00 (0.00) 0.17 (0.00)
300 0.02 (0.00) 0.91 (0.01) 0.09 (0.00) 300 0.05 (0.00) 1.00 (0.00) 0.18 (0.00)

blaha Sample size used to generate the data.
b Average across inputs with Tj ≤ 0.01 of the RMSE of T̂j given by the
b corresponding meta-model; estimated standard deviation of this average
b RRMSE given in parantheses.
c Average across inputs with Tj ≤ 0.01 of the coverage of CI’s generated by the
c corresponding meta-model; estimated standard deviation of this average
c coverage given in parantheses.
d Average across inputs with Tj ≤ 0.01 of the length of CI’s generated by the
d corresponding meta-model; estimated standard deviation of this average
d length given in parantheses.
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Table 6. Results for y2 averaged across the important inputs with
;;;;;;;;;;;;v various sample sizes.

n RMSE Cover Length n RMSE Cover Length
REG QREG

75 0.40 (0.07) 0.74 (0.12) 0.54 (0.01) 75 0.12 (0.01) 0.84 (0.02) 0.31 (0.03)
150 0.40 (0.08) 0.73 (0.14) 0.56 (0.01) 150 0.08 (0.01) 0.80 (0.02) 0.22 (0.01)
300 0.40 (0.08) 0.78 (0.12) 0.61 (0.02) 300 0.06 (0.01) 0.79 (0.03) 0.15 (0.01)

GAM RPART
75 0.12 (0.02) 0.82 (0.01) 0.29 (0.03) 75 0.18 (0.01) 0.70 (0.05) 0.35 (0.03)
150 0.08 (0.01) 0.79 (0.03) 0.21 (0.02) 150 0.11 (0.01) 0.59 (0.12) 0.22 (0.01)
300 0.06 (0.00) 0.77 (0.05) 0.15 (0.01) 300 0.10 (0.02) 0.50 (0.13) 0.16 (0.02)

MARS ACOSSO
75 0.13 (0.01) 0.87 (0.02) 0.39 (0.03) 75 0.28 (0.04) 0.81 (0.04) 0.53 (0.03)
150 0.10 (0.01) 0.85 (0.03) 0.28 (0.02) 150 0.11 (0.00) 0.75 (0.03) 0.23 (0.02)
300 0.07 (0.01) 0.86 (0.01) 0.22 (0.01) 300 0.05 (0.00) 0.86 (0.02) 0.17 (0.01)

Random Forest GBM
75 0.14 (0.02) 0.92 (0.01) 0.42 (0.04) 75 0.15 (0.01) 0.94 (0.02) 0.47 (0.07)
150 0.09 (0.01) 0.93 (0.04) 0.36 (0.04) 150 0.14 (0.02) 0.82 (0.07) 0.35 (0.07)
300 0.07 (0.01) 0.83 (0.02) 0.24 (0.02) 300 0.15 (0.02) 0.41 (0.06) 0.19 (0.04)

MLE GP MLE BGP
75 0.14 (0.01) 0.52 (0.07) 0.24 (0.02) 75 0.18 (0.02) 0.53 (0.04) 0.24 (0.01)
150 0.10 (0.01) 0.65 (0.04) 0.21 (0.01) 150 0.24 (0.03) 0.21 (0.05) 0.22 (0.02)
300 0.07 (0.00) 0.75 (0.05) 0.17 (0.02) 300 0.25 (0.04) 0.07 (0.04) 0.18 (0.01)

blaha Table structure same as in Table 4.

Table 7. Results for y2 averaged across the unimportant inputs
;;;;;;;;;;;;;v with various sample sizes.

n RMSE Cover Length n RMSE Cover Length
REG QREG

75 0.23 (0.01) 0.98 (0.00) 0.53 (0.00) 75 0.05 (0.00) 0.95 (0.01) 0.15 (0.00)
150 0.26 (0.01) 0.97 (0.00) 0.55 (0.00) 150 0.03 (0.00) 0.96 (0.00) 0.08 (0.00)
300 0.22 (0.02) 0.98 (0.01) 0.53 (0.01) 300 0.01 (0.00) 0.94 (0.01) 0.04 (0.00)

GAM RPART
75 0.04 (0.00) 0.86 (0.01) 0.08 (0.00) 75 0.07 (0.00) 0.97 (0.00) 0.22 (0.00)
150 0.02 (0.00) 0.90 (0.01) 0.06 (0.00) 150 0.06 (0.00) 0.92 (0.00) 0.16 (0.00)
300 0.01 (0.00) 0.90 (0.01) 0.04 (0.00) 300 0.05 (0.00) 0.90 (0.02) 0.12 (0.00)

MARS ACOSSO
75 0.07 (0.00) 0.95 (0.01) 0.20 (0.00) 75 0.18 (0.01) 0.94 (0.00) 0.39 (0.01)
150 0.06 (0.00) 0.96 (0.00) 0.16 (0.00) 150 0.03 (0.00) 0.96 (0.01) 0.12 (0.00)
300 0.04 (0.00) 0.97 (0.00) 0.13 (0.00) 300 0.01 (0.00) 0.96 (0.01) 0.04 (0.00)

Random Forest GBM
75 0.05 (0.00) 1.00 (0.00) 0.29 (0.00) 75 0.03 (0.00) 1.00 (0.00) 0.30 (0.00)
150 0.03 (0.00) 1.00 (0.00) 0.21 (0.00) 150 0.01 (0.00) 1.00 (0.00) 0.16 (0.00)
300 0.02 (0.00) 1.00 (0.00) 0.11 (0.00) 300 0.01 (0.00) 1.00 (0.00) 0.08 (0.00)

MLE GP MLE BGP
75 0.09 (0.00) 0.81 (0.01) 0.14 (0.00) 75 0.21 (0.00) 0.50 (0.02) 0.25 (0.00)
150 0.03 (0.00) 0.94 (0.01) 0.09 (0.00) 150 0.34 (0.00) 0.02 (0.00) 0.26 (0.00)
300 0.01 (0.00) 0.94 (0.00) 0.06 (0.00) 300 0.37 (0.00) 0.00 (0.00) 0.22 (0.00)

blaha Table structure same as in Table 5.
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Table 8. Results for y3 averaged across the important inputs with
;;;;;;;;;;;;v various sample sizes.

n RMSE Cover Length n RMSE Cover Length
REG QREG

75 0.30 (0.04) 0.49 (0.14) 0.40 (0.08) 75 0.30 (0.03) 0.62 (0.12) 0.47 (0.05)
150 0.33 (0.04) 0.24 (0.09) 0.26 (0.06) 150 0.28 (0.03) 0.51 (0.09) 0.37 (0.03)
300 0.34 (0.04) 0.06 (0.02) 0.17 (0.04) 300 0.28 (0.03) 0.24 (0.05) 0.28 (0.03)

GAM RPART
75 0.16 (0.02) 0.31 (0.06) 0.24 (0.03) 75 0.22 (0.02) 0.58 (0.06) 0.44 (0.02)
150 0.15 (0.02) 0.21 (0.06) 0.18 (0.03) 150 0.17 (0.01) 0.55 (0.03) 0.31 (0.02)
300 0.17 (0.02) 0.08 (0.02) 0.13 (0.02) 300 0.09 (0.01) 0.63 (0.10) 0.22 (0.01)

MARS ACOSSO
75 0.15 (0.01) 0.89 (0.01) 0.55 (0.02) 75 0.27 (0.03) 0.46 (0.10) 0.34 (0.06)
150 0.09 (0.00) 0.93 (0.00) 0.31 (0.01) 150 0.26 (0.02) 0.32 (0.06) 0.27 (0.05)
300 0.10 (0.00) 0.92 (0.01) 0.19 (0.01) 300 0.06 (0.00) 0.76 (0.02) 0.13 (0.00)

Random Forest GBM
75 0.22 (0.03) 0.62 (0.14) 0.41 (0.06) 75 0.28 (0.03) 0.57 (0.14) 0.44 (0.08)
150 0.22 (0.03) 0.33 (0.06) 0.27 (0.05) 150 0.26 (0.04) 0.45 (0.08) 0.31 (0.06)
300 0.18 (0.01) 0.39 (0.04) 0.17 (0.02) 300 0.23 (0.04) 0.31 (0.08) 0.20 (0.02)

MLE GP MLE BGP
75 0.23 (0.02) 0.35 (0.04) 0.32 (0.04) 75 0.23 (0.02) 0.29 (0.07) 0.22 (0.01)
150 0.16 (0.01) 0.55 (0.02) 0.26 (0.02) 150 0.16 (0.02) 0.59 (0.08) 0.19 (0.01)
300 0.08 (0.00) 0.78 (0.03) 0.25 (0.01) 300 0.07 (0.02) 0.83 (0.07) 0.16 (0.00)

blaha Table structure same as in Table 4.

Table 8 contains the results for y3 and the three sample sizes for the important inputs.
The coverages for REG, QREG, and GAM decrease as sample size increases. QREG can-
not model the periodic nature of the function, while GAM cannot model the interaction
between x1 and x3. In either case, the result as sample size increases is an increasingly pre-
cise (small variance) estimate around the incorrect value. This leads to the poor coverages
for larger sample sizes.

RPART has increasing coverage with sample size for y3, but coverage only increases
to 0.63 at n = 300. MARS once again has very good coverage at all sample sizes with
decreasing CI length as n increases. ACOSSO has poor coverage on this example for small
n, with coverage increasing to 0.76 for n = 300. The CI length and RMSE for ACOSSO
are higher than MARS for small sample sizes on this example, but length and RMSE for
ACOSSO are again the smallest of all the methods when n = 300.

Both RF and GBM have decreasing coverage as sample size increases for y3. The
RMSE also does not go down as quickly for RF and GBM as it does for the other methods.

The coverage for MLE GP is similar to ACOSSO in that coverage is poor for small n
but increases to a reasonable level for n = 300. The decrease in RMSE is also similar to
that for ACOSSO. A notable difference, however, is that the CI length for MLE GP does
not go down nearly as much when moving from n = 150 to n = 300 as is the case for
ACOSSO. MLE BGP is also similar to ACOSSO and MLE GP. Specifically, MLE BGP
has poor coverage for small n but is one of the best overall methods for y3 with n = 300.
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Table 9. Results for y3 averaged across the unimportant inputs
;;;;;;;;;;;;;v with various sample sizes.

n RMSE Cover Length n RMSE Cover Length
REG QREG

75 0.07 (0.00) 0.99 (0.00) 0.23 (0.00) 75 0.14 (0.00) 0.85 (0.01) 0.32 (0.00)
150 0.04 (0.00) 1.00 (0.00) 0.14 (0.00) 150 0.08 (0.00) 0.93 (0.00) 0.22 (0.00)
300 0.03 (0.00) 0.99 (0.00) 0.08 (0.00) 300 0.05 (0.00) 0.98 (0.00) 0.15 (0.00)

GAM RPART
75 0.02 (0.00) 0.90 (0.00) 0.05 (0.00) 75 0.08 (0.00) 0.96 (0.00) 0.23 (0.00)
150 0.01 (0.00) 0.91 (0.01) 0.04 (0.00) 150 0.04 (0.00) 0.98 (0.00) 0.14 (0.00)
300 0.01 (0.00) 0.92 (0.01) 0.03 (0.00) 300 0.02 (0.00) 0.95 (0.01) 0.06 (0.00)

MARS ACOSSO
75 0.06 (0.00) 0.98 (0.00) 0.23 (0.00) 75 0.06 (0.00) 0.93 (0.00) 0.19 (0.00)
150 0.04 (0.00) 0.99 (0.00) 0.11 (0.00) 150 0.03 (0.00) 0.98 (0.00) 0.10 (0.00)
300 0.02 (0.00) 0.97 (0.00) 0.08 (0.00) 300 0.01 (0.00) 0.99 (0.00) 0.02 (0.00)

Random Forest GBM
75 0.04 (0.00) 1.00 (0.00) 0.26 (0.00) 75 0.03 (0.00) 1.00 (0.00) 0.26 (0.00)
150 0.02 (0.00) 1.00 (0.00) 0.14 (0.00) 150 0.01 (0.00) 1.00 (0.00) 0.14 (0.00)
300 0.02 (0.00) 0.98 (0.00) 0.08 (0.00) 300 0.01 (0.00) 0.99 (0.00) 0.07 (0.00)

MLE GP MLE BGP
75 0.07 (0.00) 0.83 (0.00) 0.12 (0.00) 75 0.16 (0.00) 0.68 (0.00) 0.20 (0.00)
150 0.02 (0.00) 0.93 (0.00) 0.07 (0.00) 150 0.15 (0.00) 0.65 (0.00) 0.17 (0.00)
300 0.01 (0.00) 0.93 (0.01) 0.05 (0.00) 300 0.10 (0.00) 0.84 (0.00) 0.13 (0.00)

blaha Table structure same as in Table 5.

Lastly, Table 9 displays the results of the three sample sizes for y3 for the unimportant
inputs. This table shows results very similar to those for y1 and y2 on unimportant inputs
for each of the methods.

4.5 Summary of Simulation Results

It appears that the methods that require the strictest assumptions (QREG and GAM) can
be among the best performers, especially for small sample sizes. This is not surprising, as
these assumptions are requiring less to be estimated from the data. Hence, a smaller sample
is adequate for good estimation provided the assumptions imposed are not badly violated
by the true function. As sample size is increased, some of the more flexible methods like
GP, MARS, and ACOSSO can provide better estimators of the Tj , although this is not uni-
versally true. ACOSSO provided the best estimates of the Tj in terms of RMSE and narrow
CIs when the sample size was large (n = 300) in all three examples. The CI coverage was
reasonable in general for ACOSSO but was as low as 0.76 for y3. MARS gave more con-
sistent coverages for the CIs but also resulted in wider CIs and less accurate estimation
(higher RMSE) than ACOSSO. Both methods seem to be useful and with complementary
strengths. The MLE GP method also had good performance in general on all three exam-
ples. The RPART, RF, GBM, and MLE BGP methods all performed well in certain cases,
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but were also very inconsistent in the results on the examples studied here. On this basis,
we do not recommend using these methods since better options such as MARS, ACOSSO,
and MLE GP exist.

The plot in Figure 8 gives (i) the average RMSE for estimating the Tj (averaged across
important inputs) with each of the methods versus (ii) the corresponding computing time
to estimate the Tj and produce CIs. Each method is plotted three times: once for each of
the three output examples with n = 300. This plot indicates how much computing time is
required relative to the accuracy of the individual methods. Specifically, ACOSSO, MLE
GP, and MLE BGP take roughly an order of magnitude longer than the other methods.
MARS was one of the better methods overall and is very fast to compute, making it an
attractive option for use in practice. QREG also did very well in the first two examples.
Given the ease of interpretation and speed of computation, QREG is another good option
for practical use. Although ACOSSO and MLE GP take longer to compute than QREG and
MARS, they are also consistently very good in terms of RMSE. Thus we recommend the
use of these four methods (QREG, MARS, ACOSSO, MLE GP) to perform SA in actual
analyses.
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Figure 8. Plot of (i) the average RMSE for estimating the Tj (av-
eraged across important inputs) with each of the methods versus
(ii) the corresponding computing time to estimate the Tj and pro-
duce CIs. Points are labeled by meta-model name and the output
example number.
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5 Practical Implementation

We now describe a simple yet effective strategy for the efficient use of the approaches
discussed thus far in an actual sensitivity analysis for a computationally demanding model.
We then provide an example sensitivity analysis using this strategy on a real data set from
the 1996 Waste Isolation Pilot Plant (WIPP) compliance certification application (CCA).

5.1 Algorithmic Description

Suppose that there are q outputs of interest in the analysis, y = y1, . . . , yq.

1. Determine appropriate distributions for each of the inputs to describe their uncer-
tainty.

2. Take a sample (simple random, Latin hypercube, fixed design, etc.) from the input
variables of size n.

3. Generate the outputs, y, from the computer model for each of the n values of the
input vector, x.

Now repeat steps 4 and 5 for each of the q outputs.

4. Fit a rank regression to yk. If the R2 value of the fit is above R2
min, then use the

Standardized Rank Regression Coefficients (SRRCs) and Partial Rank Correlation
Coefficients (PRCCs) to summarize input variable importance. Create bootstrap CIs
for these quantities as described in Section 2.3 if desired.

5. If the R2 value of the rank regression fit is below R2
min, then fit several flexible re-

gression methods. For each of these methods, calculate Tj based on the meta-model
and the corresponding CIs if desired.

We recommend using four or five different flexible regression surfaces in step 5. It
has been our experience that if rank regression does not sufficiently model the data, then it
means the underlying surface is fairly complex. As such, more flexible methods will not
always agree on their respective estimates of the Tj . Hence it is valuable to obtain several
different estimates of varying complexity to gage how trustworthy these estimates are. We
suggest using QREG, MARS, ACOSSO, and MLE GP for this purpose because (i) they
cover a large spectrum of model complexity and continuity, and (ii) their performances
seemed to complement each other fairly well in the simulations of Section 4.

The strategy above ensures that the more time consuming nonparametric methods are
only used when they are needed. Some thought does need to go into the specification of the
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control parameter R2
min however. This choice largely depends on the number of outputs, the

time available for analysis, and the importance of the analysis, etc. We can only suggest that
a reasonable guideline is to use R2

min somewhere in the range of [.75, .90]. In the analysis
presented in the next section, we use R2

min = .80.

5.2 Example Sensitivity Analysis

The data for this example comes from an uncertainty/sensitivity analysis of a model for
two phase fluid flow [57, 7, 59, 60] carried out as part of the 1996 CCA for the WIPP [7].
The CCA involved p = 57 uncertain variables, with 31 of these variables used in the two-
phase fluid flow analysis considered in this section [61]; see Appendix B.1 for definitions
of the variables. The two-phase fluid flow analysis considered six different scenarios (i.e.,
modeling cases) and generated several hundred time-dependent analysis results for each
modeling case (i.e., see Table 1, Ref. [59], for a partial listing of these results). A small
subset of these results is considered in this presentation. In particular, the modeling case
corresponding to a drilling intrusion at 1,000 yr that penetrates both the repository and an
underlying region of pressurized brine is used as an example (i.e., an E1 intrusion at 1,000
yr in the terminology of the 1996 WIPP CCA; see Table 6, [61]).

The example analysis used 3 independently generated Latin hypercube samples of size
100 each (resulting in a total sample size of n = 300) to generate a mapping between analy-
sis inputs and analysis results of the form Eq. (1.1). The time-dependent result WAS PRES
is analyzed at 1,000 yr and 10,000 yr. WAS PRES is the Pressure (Pa) in the waste panel
penetrated by a drilling intrusion (i.e., in the region corresponding to Cells 596-616 in Fig.
3 of [57]). The results at 1,000 yr are for undisturbed conditions immediately prior to the
drilling intrusion at 1,000 yr. Because of this timing, the 1,000 yr results are unaffected by
the drilling intrusion and thus are very different from the 10,000 yr results. The data is avail-
able at http://www.stat.unm.edu/∼storlie/CompModSA/wipp data.txt. The
input variables pairs (HALPRM, HALCOMP) and (ANHPRM, ANHCOMP) are very highly
correlated, thus only HALPRM and ANHPRM were used in the presented SA.

To perform the SA on the two outputs considered here, we use the R statistical comput-
ing software. R is an open source software very similar to S-Plus. For documentation and
more information on the the use of R, go to http://cran.r-project.org/. There is an
R-package called ’CompModSA’ available at http://www.stat.unm.edu/∼storlie
that has a function called sensitivity that can perform the procedures described in this
paper. Appendix A gives more details about installation and use of ’CompModSA’ along
with an example of how to produce the calculations given below.

67



Pressure at 1,000 yr (WAS PRES.1K)

Table 10 gives the results of a SA performed on WAS PRES at 1,000 years (WAS PRES.1K)
by following the steps described in Section 5.1. The R2 value for rank regression is 0.94,
with the result that rank regression is all that is performed on this output variable. These
results indicate that the microbial degradation of cellulose (WMICDFLG) is the most im-
portant variable affecting WAS PRES.1K at 1,000 years with PRCC2 between 0.89 and 0.95
as indicated by the CI. After WMICDFLG, corrosion rate for steel (WGRCOR) and the in-
crease in brine saturation of waste due to capillary forces (WASTWICK) are also important
variables affecting WAS PRES at 1,000 years. ANHPRM may also have a small effect,
with PRCC2 values between 0.01 and 0.10. The remaining variables listed (WGRMICI,
ANHBCVGP, HALPRM, SHPRMSAP) may have some small effect on WAS PRES at 1,000
years, but do not have a statistically significant effect (at the 0.05 level of significance for
example), as evidenced by p-values greater than 0.05 for each of these variables.

Pressure at 10,000 yr (WAS PRES.10K)

Table 11 gives the SA results for WAS PRES at 10,000 years (WAS PRES.10K). In this
case, the R2 = 0.20 for rank regression, so that the other more flexible meta-models are
then fit to the output. The estimates of the sensitivity index Tj of bore hole permeability
(BHPERM) given by each of the four meta-models are between 0.44 and 0.70. Figure 9
shows a scatterplot of WAS PRES.10K versus BHPERM indicating a definite relationship
between these variables. Figure 9 also shows a scatterplot of WAS PRES.10K versus BP-
COMP which is indicated to be the second (or at most third) most important variable by
the four meta-models. Clearly, BHPERM is the most influential input to this analysis but
there is some discrepancy as to how much uncertainty is due to BHPERM.
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Table 10. Results for WAS PRES at 1,000 years (WAS PRES.1K)
using Rank Regression with PRCCs. Forward/backward stepwise
model fitting with GCV criterion was used to select the inputs
displayed below.

Estimated Model Summary: R2 = 0.943, model df = 8

Input R2 a SRRC b PRCC2 c 95% PRCC2 CI d p-val e

WMICDFLG 0.783 0.945 0.930 (0.893, 0.950) 0.000
WGRCOR 0.891 0.332 0.660 (0.578, 0.732) 0.000
WASTWICK 0.936 0.216 0.451 (0.334, 0.586) 0.000
ANHPRM 0.939 0.055 0.050 (0.007, 0.107) 0.020
WGRMICI 0.941 0.036 0.022 (0.000, 0.079) 0.200
ANHBCVGP 0.942 0.039 0.019 (0.000, 0.057) 0.080
HALPRM 0.943 0.028 0.013 (0.000, 0.080) 0.320
SHPRMSAP 0.943 0.027 0.012 (0.000, 0.050) 0.360
a Cumulative R2 value of the rank regression model with the entry
a of successive variables into the model.
b Standardized rank regression coefficient (SRRC) in the final rank
b regression model.
c Partial rank regression correlation coefficient squared (PRCC2),
c which can be interpreted as the proportion of the remaining variance
c (left over in the rank data after including all of the other variables)
c that is explained by adding the current variable.
d CIs for PRCC2 obtained using the nonparametric bootstrap.
d Specifically, the procedure described in Section 2.3 is used with
d θ = PRCC2 and F ∗ equal to the empirical CDF.
e Bootstrap p-value for H0 : PRCC2 = 0 calculated according to
e Eq. (2.26) with PRCC2 in place of Tj .
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Figure 9. Scatterplots of (a) WAS PRES.10K versus BHPERM
and (b) WAS PRES.10K versus BPCOMP
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Table 11. Results for WAS PRES.10K using the meta-models
QREG, MARS, ACOSSO, and MLE GP.

blah
Meta-model: QREG (see Sect. 2.3, Ref.[12])
Estimated Model Summary: R2 = 0.880, model df = 89

Input Ŝj
a Ŝcum

b T̂j
c 95% Tj CI d p-val e

BHPERM 0.488 0.488 0.529 (0.495, 0.699) 0.000
BPCOMP 0.093 0.581 0.166 (0.134, 0.252) 0.000
HALPRM 0.119 0.700 0.104 (0.031, 0.164) 0.000
ANHPRM 0.083 0.784 0.094 (0.030, 0.122) 0.000
WGRCOR 0.039 0.823 0.078 (0.013, 0.117) 0.000
BPMAP 0.024 0.847 0.039 (0.000, 0.099) 0.140
HALPOR 0.051 0.897 0.038 (0.000, 0.087) 0.260
SHRGSSAT 0.013 0.911 0.036 (0.000, 0.079) 0.140
BPINTPRS 0.029 0.940 0.031 (0.000, 0.087) 0.200
ANHBCVGP 0.012 0.952 0.031 (0.000, 0.082) 0.180
SHPRNHAL 0.031 0.983 0.019 (0.000, 0.084) 0.460
WMICDFLG 0.017 1.000 0.017 (0.000, 0.093) 0.520
Meta-model: MARS (see Sect. 3.1)
Estimated Model Summary: R2 = 0.940, model df = 52

Input Ŝj Ŝcum T̂j 95% Tj CI p-val
BHPERM 0.407 0.407 0.546 (0.440, 0.937) 0.000
WGRCOR 0.086 0.493 0.158 (0.095, 0.313) 0.000
BPCOMP 0.083 0.576 0.154 (0.000, 0.747) 0.120
ANHPRM 0.092 0.668 0.127 (0.000, 0.691) 0.120
HALPRM 0.107 0.774 0.122 (0.000, 0.257) 0.040
BPMAP 0.048 0.823 0.050 (0.000, 0.130) 0.080
HALPOR 0.018 0.840 0.031 (0.000, 0.122) 0.280
WMICDFLG 0.018 0.858 0.025 (0.000, 0.056) 0.060
SHPRMDRZ 0.022 0.880 0.020 (0.000, 0.176) 0.180
WFBETCEL 0.003 0.883 0.020 (0.000, 0.164) 0.140
WGRMICH 0.005 0.888 0.019 (0.000, 0.316) 0.220
SALPRES 0.005 0.893 0.018 (0.000, 0.099) 0.300
WASTWICK 0.037 0.930 0.018 (0.000, 0.142) 0.220
WRBRNSAT 0.000 0.930 0.015 (0.000, 0.201) 0.380
BPINTPRS 0.025 0.955 0.012 (0.000, 0.079) 0.340
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Table 11. Results for WAS PRES.10K using the meta-models
QREG, MARS, ACOSSO, and MLE GP.

blah
Meta-model: ACOSSO (see Sect. 3.4)
Estimated Model Summary: R2 = 0.920, model df = 110

Input Ŝj Ŝcum T̂j 95% Tj CI p-val
BHPERM 0.406 0.406 0.442 (0.391, 0.649) 0.000
HALPRM 0.108 0.514 0.124 (0.038, 0.155) 0.000
BPCOMP 0.115 0.629 0.124 (0.053, 0.205) 0.000
ANHPRM 0.106 0.735 0.097 (0.022, 0.152) 0.000
WGRCOR 0.015 0.750 0.052 (0.000, 0.110) 0.050
HALPOR 0.050 0.800 0.048 (0.000, 0.117) 0.200
BPMAP 0.039 0.840 0.045 (0.000, 0.095) 0.100
ANHBCVGP 0.013 0.852 0.041 (0.000, 0.109) 0.150
WRGSSAT 0.000 0.852 0.023 (0.000, 0.047) 0.050
ANRBRSAT 0.022 0.875 0.020 (0.000, 0.069) 0.150
SHPRNHAL 0.000 0.875 0.020 (0.000, 0.084) 0.275
SHRBRSAT 0.009 0.884 0.020 (0.000, 0.067) 0.225
SHBCEXP 0.000 0.884 0.014 (0.000, 0.063) 0.525
WMICDFLG 0.036 0.920 0.010 (0.000, 0.098) 0.775
SALPRES 0.011 0.930 0.010 (0.000, 0.044) 0.250
Meta-model: MLE GP (see Sect. 3.5)
Estimated Model Summary: R2 = 0.995, model df = 246

Input Ŝj Ŝcum T̂j 95% Tj CI p-val
BHPERM 0.509 0.509 0.706 (0.692, 0.918) 0.000
BPCOMP 0.104 0.613 0.143 (0.069, 0.248) 0.000
HALPRM 0.125 0.737 0.123 (0.072, 0.182) 0.000
ANHPRM 0.119 0.856 0.093 (0.003, 0.156) 0.025
WGRCOR 0.052 0.909 0.068 (0.029, 0.124) 0.000
HALPOR 0.001 0.910 0.037 (0.000, 0.097) 0.125
SHPRMSAP 0.018 0.928 0.018 (0.000, 0.050) 0.175
BPMAP 0.015 0.943 0.016 (0.000, 0.082) 0.400
ANHBCVGP 0.007 0.950 0.015 (0.000, 0.054) 0.225
WRGSSAT 0.010 0.960 0.014 (0.000, 0.052) 0.250
SHPRMDRZ 0.000 0.960 0.013 (0.000, 0.045) 0.275
ANHBCEXP 0.000 0.960 0.012 (0.000, 0.046) 0.300
SHPRMCLY 0.004 0.964 0.012 (0.000, 0.052) 0.150
SHPRNHAL 0.003 0.967 0.011 (0.000, 0.044) 0.225
SHRBRSAT 0.000 0.967 0.010 (0.000, 0.049) 0.275
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Table 11. Results for WAS PRES.10K using the meta-models
QREG, MARS, ACOSSO, and MLE GP.

blah
a Estimate described in Eq. (2.6) and the following sentence of
a the stepwise proportion of variance explained by the input
a and any of its interactions with inputs already in the model
a (i.e., those listed above the input in question).
b Cumulative proportion of variance explained by the input
b along with all inputs already in the model. This is the sum
b of the Ŝj up to and including the current input.
c Estimate described in Eq. (2.1) and the following sentence of
c the proportion of the total variance explained by the input
c and any of its interactions with other inputs.
d Bootstrap CI for Tj as given in Eq. (2.22).
e Bootstrap p-value for H0 : Tj = 0 given in Eq. (2.26).

The CIs from QREG in Table 11 indicate that BHPERM is responsible for 50% to 70%
of the uncertainty in WAS PRES.10K. After BHPERM, the variable importance rankings are
less certain. However, the upper confidence limits suggest that brine pocket compressibil-
ity (BPCOMP) may account for a significant portion (upwards of 25%) of the uncertainty.
Halite permeability (HALPRM), anhydrite permeability (ANHPRM), and corrosion rate for
steel (WGRCOR) all may account for a significant portion (16%, 12%, and 12% respec-
tively) of the uncertainty as well. These results are consistent with those from ACOSSO.
ACOSSO indicates that halite porosity (HALPOR) may also account for as much as 12% of
the uncertainty. MLE GP gives similar estimates and CIs as well. However, a notable dif-
ference is that MLE GP estimates the percentage of the total uncertainty due to BHPERM
to be somewhat higher (between 69% and 92%).

The CIs from MARS are a too wide to be of much use in this example. Several of the
CI lengths are wider than 0.5. The CIs from the other methods are somewhat wide as well
but they are more usable. In any case, the CIs described in this presentation are valuable
especially when there is a moderate to large amount of variability in the estimates for Tj

such as in this example. Namely, the wide CIs inform us not to blindly treat the problem as
though T̂j is the true value of Tj , but rather to rely on the CIs from QREG, ACOSSO, and
MLE GP to guide any decision making.
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6 Summary and Further Work

In this presentation, we have described several nonparametric regression methods that can
be used to construct meta-models which in turn can then be used to calculate sensitivity
measures. A bootstrap procedure to construct confidence intervals for sensitivity measures
was also proposed and studied via simulation. These simulation examples indicated that
simpler models such as quadratic regression and additive smoothing splines can work very
well to estimate sensitivity measures in some cases, especially for small sample sizes. As
sample size increases, more flexible models (MARS, ACOSSO, and MLE GP in particular)
can provide better estimation. A practical guide for implementation of these techniques was
also given.

For the purpose of SA, the meta-models that performed the best overall were MARS,
ACOSSO, and MLE GP. The ACOSSO and MLE GP models tend to give narrower CIs
for the total sensitivity indices, but MARS generally has better coverage for these CIs.
In difficult problems, however, such as the 29 input model with n = 300 of Section 5.2,
MARS gives CIs too wide to be useful. ACOSSO and MLE GP also take much longer to
compute (about 2 hours each on the example in Section 5.2 compared to about 10 minutes
for MARS). Therefore a reasonable strategy is to first fit a rank regression model. If this
does not provide an adequate fit, then fit a QREG model and a MARS model. If the MARS
model gives CIs that are too wide to be useful, then fit an ACOSSO and/or a MLE GP
model. This will minimize the use of the more expensive procedures.

In this presentation, the total sensitivity index, Tj , was used as an example to study
the use of the proposed meta-model estimation and bootstrap CI approach. It is important
to recognize that this same procedure will apply to any quantity of interest that requires
a large number of computations of the output function f (e.g., other sensitivity measures
and/or uncertainty measures like quantiles, threshold exceedence probabilities, . . .).

It is of interest to continually update this strategy as new meta-models are developed.
For example, ACOSSO is very new but works quite well. There are also very recently
developed GP models that provide variable selection that may be of use in this framework
[52, 47, 53]. The bootstrap approach for CIs seems to work well on the test cases used here.
However, it can be expensive to generate a large number of bootstrap samples depending
on the method and sample size in use. A possible alternative is to derive the asymptotic
distribution of T̂j as in [22] for some of the methods.
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A The R-Package CompModSA

This section describes the installation and functionality of the R-package CompModSA

which is designed to carry out sensitivity analyses for Complex Computer Models in a
manner described in the main body of this presentation. R is an open source statistical com-
puting software very similar to S-Plus. Please go to http://cran.r-project.org/ for
documentation and more information on the the use of R.

A.1 Downloading and Installing CompModSA

To download the package, go to http://www.stat.unm.edu/˜storlie. Download
CompModSA 1.0.tar.gz for Linux and CompModSA 1.0.zip for Windows. It will also
be available soon on the CRAN website, http://cran.r-project.org/. Once there
click on packages, then CompModSA.

Installation under Linux

While in the directory that contains the file ’CompModSA 1.0.tar.gz’, type the command

$ R CMD INSTALL CompModSA 1.0.tar.gz

This will install the package into the default R library location. To put the package some-
where else (because of permissions for example), use

$ R CMD INSTALL -l libpath CompModSA 1.0.tar.gz

where libpath is an alternative location to put the package. Type ’R CMD INSTALL –help’
for more information on installing R packages.

Once installed to load the package, open R and type

> library(CompModSA)

or

> library(CompModSA, lib.loc=libpath)

if libpath is not in your library tree

Installation under Windows

Open R and select
Packages -> Install package(s) from local .zip files.

Then select
CompModSA.zip.
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Once installed, to load the package in R type

> library(CompModSA)

A.2 The sensitivity Function

This is a function in the CompModSA package the will perform a sensitivity analysis by
fitting regression surface(s) (of varying complexity) to the output from a complex model.
This function is useful for conducting sensitivity analysis of complex computer codes when
model evaluations are somewhat expensive but a reasonable number ( 50 or more) of model
evaluations can be obtained at sampled input values.

Usage
sensitivity(sens.dat, x.pos, y.pos, surface=’auto’, control)

Arguments
sens.dat: a matrix or data frame where the columns contain the input variables and the

output variables of an analysis. Each row corresponds to a model evaluation at a
given value for the inputs.

x.pos: a vector containing the column locations in sens.dat of the input variables used
to generate model outputs.

y.pos: a vector containing the column locations in sens.dat of the output variables
given by the model.

surface: which regression surface method to fit to the model output. Options are ’reg’
(linear regression), ’rank’ (rank regression), ’qreg’ (quadratic response sur-
face regression), ’loc.reg’ (local regression), ’gam’ (additive Models), ’ppr’
(projection pursuit regression), ’mars’ (Multivariate Adaptive Regression Splines),
’tree’ (Recursive Partitioning Regression), ’acosso’ (Adaptive COSSO), ’gbm’
(Gradient Boosting method), ’rf’ (Random Forest) ’mlegp’ (Gaussian Pro-
cess/ MLE), ’bgp’ (Bayesian Gaussian Process), and ’tgp’ (Treed Gaussian
Process). The value can also be specified as a character vector of length(y.pos),
giving the desired surface to be fit to each of the outputs. The default is ’auto’
which fits surface=’rank’ unless R2 < min.Rsq. In which case it fits all of
the methods in the try.surface control parameter.

control: a list with values that control the surface fitting and sensitivity index calculation.
Elements of control are described below:

maxterms - the maximum number of input variables allowed into the model; default
= 20.

crit - the criterion to use for which variables enter or leave the model during
stepwise construction. Options are ’gcv’ (the default) or ’pval’. Only
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applicable when surface equals ’reg’, ’rank’, ’rs.reg’, ’loc.reg’,
or ’gam’.

alpha - the cut-off to use if crit=’pval’; default = .02.
gcvpen - the penalty to use for each degree of freedom when calculating GCV

score. Only applicable when surface = ’mars’ or ’tree’; default =
2.

maxsize - the maximum number of basis functions allowed in mars model; default
= 200.

minsplit - Argument passed to rpart to build a regression tree model; the minimum
number of observations that must exist in a node, in order for a split to be
attempted; default = 10.

int.order - The order of interactions to consider for ’acosso’ and ’mars’ models.
Currently supports int.order = 1 (additive model) and int.order =

2 (two-way interaction model); default = 2.
wt.pow - the power given to the initial estimate of L2 norm for ’acosso’; default

= 2.
acosso.cv - the criterion used for smoothing parameter selection in ’acosso’. Op-

tions are ’bic’, ’gcv’ (the default), and ’5cv’.
BTE - 3-vector of MCMC parameters for ’gp’ and ’tgp’. (B)urn in, (T)otal,

and (E)very. Predictive samples are saved every E MCMC rounds starting
at round B, stopping at T; default = c(1000, 4000, 2).

distn - The distribution to assume on the input variables for Monte Carlo (MC)
calculation of S.index and T.index. Currently supports ’emp’ (use em-
pirical distribution of the inputs) and ’unif’ (use uniform distribution).
Either way, inputs are currently assumed independent for the purposes of
calculation; default = ’emp’.

n.mc.S - number of MC sample points to use in the two samples needed to calcu-
late the quantity Sj; default = 2000.

n.mc.T - number of MC sample points used to calculate the quantity Tj; default =
2000.

n.samples - MC integration to calculate of Sj and Tj is repeated n.samples times
and the average is used. This allows for better accuracy while using less
memory than simply using larger values of n.mc.T for example; default =
10.

CI - TRUE or FALSE; should bootstrap confidence intervals be calculated for
the Tj (or credible sets for ’gp’ and ’tgp’); default = FALSE. Other op-
tions are control$CI = 1 which will use the nonparametric or ”naive”
bootstrap. control$CI = 3 will use a parametric bootstrap with re-
sampling on the inputs as well. control$CI = 4 will use the wild
bootstrap with resampling on the inputs as well. control$CI = 3 or
control$CI=TRUE will use the bootstrap procedure described in this re-
port. control$CI = "none" or control$CI=FALSE will not do CIs.
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n.CI - the number of bootstrap samples to use if creating confidence intervals
(or number of realizations to use for ’gp’ and ’tgp’); default = 100.

n.mc.CI - Same as n.mc.T, but applies to the calculation of Tj for each bootstrap
sample (realization); default = 500.

alpha.CI - The confidence level used for the CIs is 100(1-alpha.CI)%; default =
0.05.

max.disp.var - the maximum number of displayed variables in the output; default =
15.

min.TUL - the minimum value to display in the output for the upper confidence limit
(UCL) on T. Variables with UCL ¡ min.TUL will not be displayed; default
= .05

min.Rsq - when using surface=’auto’, methods in try.surfaces will be fit
unless the model R2 value for surface=’rank’ is greater than min.Rsq.
In which case only surface=’rank’ is used; default = .80.

try.surfaces - a list containing the surfaces to try if R2 < min.Rsq for surface=’rank’.
default = c(’qreg’, ’mars’, ’acosso’, ’mlegp’). Only applica-
ble if surface=’auto’ was specified.

categorical - a vector containing the column locations of data which correspond to
categorical variables; default = ’auto’ which treats a variable as categor-
ical if it has no more than min.distinct distinct values.

min.distinct - see categorical above; default = 10.

n.screen - If the number of input variables is greater than n.screen, then the SRD/RCC
test described in [56] is used to screen variables. Inputs with p-value ¿ .05
are excluded in meta-model fitting. ;default = 30.

Details

The function sensitivity performs a sensitivity analysis of a complex computer model
by using a data set containing model evaluations at several sampled input values. If surface
= reg, a stepwise regression is fit to the data and the corresponding standardized re-
gression coefficients (SRCs) and partial correlation coefficients (PCCs) are obtained. If
surface = ’rank’ stepwise regression is fit to the rank transformed output variables
and the corresponding standardized rank regression coefficients (SRRCs) and partial rank
correlation coefficients (PRCCs) are obtained. See Section 2.1.

For all other surface options a surrogate model approximation is fit to the data set using
the specified surface. For surface=’qreg’ ,’loc.reg’, or ’gam’ variable selection
is achieved in a stepwise manner. Variable selection is inherently part of the regression
procedure when surface = ’tree’, ’mars’, or ’acosso’. Surfaces ’gbm’, ’rf’,
’gp’, and ’tgp’ do not use any variable selection.

The following sensitivity indices are obtained using the surrogate model. The total
variance index, Tj is defined in Eq. (1.3) and Sj is defined in Eq. (2.5). The Sj and Tj are
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evaluated by Monte Carlo (MC) sampling on the input (x) distribution while the output (y)
at each sampled x value is evaluated via the surrogate model. These MC calculations can
be done with a good deal of accuracy because the surrogate model is very fast to evaluate.
Specifically these calculations are carried out as described on p. 178 of [8].

Confidence intervals for the Tj (which include uncertainty from MC calculation of Tj

and uncertainty in the surrogate model) are also be generated by bootstrapping (or from
the posterior distribution of the gp or tgp methods) Setting control$CI = 1 produces
CIs using the nonparametric bootstrap for generating yis (simply resampling the (x, y)
data). Setting control$CI = 2 uses the parametric generation of yis discussed in Sec-
tion 2.3 but by reusing all n of the observed x values in each bootstrap sample. Setting
control$CI = 3 uses the parametric generation of yis discussed in Section 2.3 but with
resampling of the observed x values in each bootstrap sample. Setting control$CI = 4

uses the parametric generation of yis with the generation of error terms as in the “wild”
bootstrap described in [21] and reusing all n of the observed x values in each bootstrap
sample. Setting control$CI = 5 or control$CI = TRUE uses the the bootstrap pro-
cedure discussed in Section 2.3.

A.3 Example Sensitivity Analysis using ’CompModSA’

Here we illustrate how to use the R-package ’CompModSA’ to carry out the sensitivity
analysis on two phase fluid flow model presented in Section 5.2. The data for this illustra-
tion is available at http://www.stat.unm.edu/˜storlie/CompModSA/wipp data.txt.

For each of the two outputs considered here, we will use the sensitivity function
with surface=’auto’ to generate SA results. To facilitate the analysis we must first
import the data into R. This is done by typing

> wipp.data <- read.table(
’http://www.stat.unm.edu/˜storlie/CompModSA/wipp data.txt’,
header=T)

at the R prompt. This reads the text file “wipp data.txt” into the R data frame wipp.data.
You may then load the ’CompModSA’ package by typing the command

> library(’CompModSA’)

Pressure at 1000 yr (WAS PRES.1K)

The input variables to the analysis are in columns 1-31 of the data frame wipp.data while
the output WAS PRES.1K is in column 32. However the input variables pairs (HALPRM,
HALCOMP) and (ANHPRM, ANHCOMP) are very highly correlated respectively so only
HALPRM and ANHPRM were used in the analysis. This excludes columns 29 and 31.
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Hence the command

> sens.WAS PRES.1K <- sensitivity(wipp.data, x.pos=c(1:18, 20, 22:31),
y.pos=33, surface=’auto’, control=list(n.samples=10, min.Rsq=.80, CI=T,
n.CI=100, n.screen=50))

> print(sens.WAS PRES.1K)

will reproduce the SA results for WAS PRES.1K given in Table 10.

Pressure at 10,000 yr (WAS PRES.10K)

The command

> sens.WAS PRES.10K <- sensitivity(wipp.data, x.pos=c(1:18, 20, 22:31),
y.pos=36, surface=’auto’, control=list(n.samples=10, min.Rsq=.80, CI=T,
n.CI=50, n.screen=50, n.mc.S=2000, n.mc.T=2000, n.mc.CI=500, maxterms=15,
try.surfaces=c(’qreg’, ’mars’, ’acosso’, ’mlegp’))

> print(sens.WAS PRES.10K)

will reproduce the SA results for WAS PRES.10K given in Table 11. Notice this command
takes much longer to execute than that for WAS PRES.1K since surface=’rank’ does not
meet the R2 ≥ .80 threshold. Hence the results using surfaces ’rs.reg’ ’gam’, ’mars’, and
’acosso’ need to be produced.

Alternatively the analysis of both outputs at once could have been performed by using
the command

> sens.all <- sensitivity(wipp.data, x.pos=c(1:18, 20, 22:31),
y.pos=c(33,36), surface=’auto’, control=list(n.samples=10, min.Rsq=.80,
CI=T, n.CI=50, n.screen=50, n.mc.S=2000, n.mc.T=2000, n.mc.CI=500,
maxterms=15, try.surfaces=c(’qreg’, ’mars’, ’acosso’, ’mlegp’))

> print(sens.all)
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B Definition of Variables involved in Two-Phase Fluid
Flow Example

B.1 Input Variables

Listed below are the input variables considered in example sensitivity analyses for Two-
Phase Fluid Flow in Section 5.2 (Source: Table 1, Ref. [61])

ANHBCEXP - Brooks-Corey pore distribution parameter for anhydrite (dimensionless). Distribu-
tion: Student’s with 5 degrees of freedom. Range: 0.491 to 0.842. Mean, Median: 0.644,
0.644.

ANHBCVGP - Pointer variable for selection of relative permeability model for use in anhydrite.
Distribution: Discrete with 60% 0, 40% 1. Value of 0 implies Brooks-Corey model; value of
1 implies van Genuchten-Parker model.

ANHCOMP - Bulk compressibility of anhydrite (Pa-1). Distribution: Student’s with 3 degrees of
freedom. Range: 1.09 × 10−11 to 2.75 × 10−10 Pa−1. Mean, Median: 8.26 × 10−11 Pa−1,
8.26× 10−11 Pa−1. Correlation: -0.99 rank correlation with ANHPRM.

ANHPRM - Logarithm of anhydrite permeability (m2). Distribution: Student’s with 5 degrees of
freedom. Range: -21.0 t o -17.1 (i.e., permeability range is 1× 10− 21 to 1× 10− 17.1 m2).
Mean, Median: -18.9, -18.9. Correlation : -0.99 rank correlation with ANHCOMP.

ANRBRSAT - Residual brine saturation in anhydrite (dimensionless). Distribution: Student’s with
5 degrees of freedom. Range: 7.85 × 10−3 to 1.74 × 10−1. Mean, Median: 8.36 × 10−2,
8.36× 10−2.

ANRGSSAT - Residual gas saturation in anhydrite (dimensionless). Distribution: Student’s with
5 degrees of freedom. Range: 1.39 × 10−2 to 1.79 × 10−1. Mean, median: 7.71 × 10−2,
7.71× 10−2

BHPRM - Logarithm of borehole permeability (m2). Distribution: Uniform. Range: -14 to -11
(i.e., permeability range is 1× 10−14 to 1× 10−11 m2). Mean, median: −12.5, −12.5.

BPCOMP - Logarithm of bulk compressibility of brine pocket (Pa−1). Distribution: Triangular.
Range: -11.3 to -8.00 (i.e., bulk compressibility range is 1 × 10−11.3 to 1 × 10−8 Pa−1).
Mean, mode: -9.80, -10.0. Correlation: -0.75 rank correlation with BPPRM.

BPINTPRS - Initial pressure in brine pocket (Pa). Distribution: Triangular. Range: 1.11× 107 to
1.70× 107 Pa. Mean, mode: 1.36× 107 Pa, 1.27× 107 Pa.

BPPRM - Logarithm of intrinsic brine pocket permeability (m2). Distribution: Triangular. Range:
-14.7 to -9.80 (i.e., permeability range is 1 × 10−14.7 to 1 × 10−9.80 m2). Mean, mode:
-12.1, -11.8. Correlation: -0.75 rank correlation with BPCOMP.

BPVOL - Pointer variable for selection of brine pocket volume. Distribution: Discrete, with integer
values 1, 2, ..., 32 equally likely.
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HALCOMP - Bulk compressibility of halite (Pa−1). Distribution: Uniform. Range: 2.94× 10−12

to 1.92× 10−10 Pa−1. Mean, median: 9.75× 10−11 Pa−1, 9.75× 10−11 Pa−1. Correlation:
-0.99 rank correlation with HALPRM.

HALPOR - Halite porosity (dimensionless). Distribution: Piecewise uniform. Range: 1.0× 10−3

to 3× 10−2. Mean, median: 1.28× 10−2, 1.00× 10−2.

HALPRM - Logarithm of halite permeability (m2). Distribution: Uniform. Range: -24 to -21 (i.e.,
permeability range is 1× 10−24 to 1× 10−21 m2). Mean, median: -22.5, -22.5. Correlation:
-0.99 rank correlation with HALCOMP.

SALPRES - Initial brine pressure, without the repository being present, at a reference point located
in the center of the combined shafts at the elevation of the midpoint of Marker Bed (MB)
139 (Pa). Distribution: Uniform. Range: 1.104 × 107 to 1.389 × 107 Pa. Mean, median:
1.247× 107 Pa, 1.247× 107 Pa.

SHBCEXP - Brooks-Corey pore distribution parameter for shaft (dimensionless). Distribution:
Piecewise uniform. Range: 0.11 to 8.10. Mean, median: 2.52, 0.94.

SHPRMSAP - Logarithm of permeability (m2) of asphalt component of shaft seal (m2). Distribu-
tion: Triangular. Range: −21 to−18 (i.e., permeability range is 1×10−21 to 1×10−18 m2).
Mean, mode: −19.7, −20.0.

SHPRMCLY - Logarithm of permeability (m2) for clay components of shaft. Distribution: Trian-
gular. Range: −21 to −17.3 (i.e., permeability range is 1×10−21 to 1×10−17.3 m2). Mean,
mode: −18.9, −18.3.

SHPRMCON - Same as SHPRMASP but for concrete component of shaft seal for 0 to 400 yr.
Distribution: Triangular. Range: −17.0 to −14.0 (i.e., permeability range is 1 × 10−17 to
1× 10−14 m2). Mean, mode: −15.3, 15.0.

SHPRMDRZ - Logarithm of permeability (m2) of DRZ surrounding shaft. Distribution: Triangu-
lar. Range: −17.0 to −14.0 (i.e., permeability range is 1× 10−17 to 1× 10−14 m2). Mean,
mode: −15.3, −15.0.

SHPRMHAL - Pointer variable (dimensionless) used to select permeability in crushed salt com-
ponent of shaft seal at different times. Distribution: Uniform. Range: 0 to 1. Mean, mode:
0.5, 0.5. A distribution of permeability (m2) in the crushed salt component of the shaft seal
is defined for each of the following time intervals: [0, 10 yr], [10, 25 yr], [25, 50 yr], [50,
100 yr], [100, 200 yr], [200, 10000 yr]. SHPRMHAL is used to select a permeability value
from the cumulative distribution function for permeability for each of the preceding time in-
tervals with result that a rank correlation of 1 exists between the permeabilities used for the
individual time intervals.

SHRBRSAT - Residual brine saturation in shaft (dimensionless). Distribution: Uniform. Range: 0
to 0.4. Mean, median: 0.2, 0.2.

SHRGSSAT - Residual gas saturation in shaft (dimensionless). Distribution: Uniform. Range: 0
to 0.4. Mean, median: 0.2, 0.2.

WASTWICK - Increase in brine saturation of waste due to capillary forces (dimensionless). Distri-
bution: Uniform. Range: 0 to 1. Mean, median: 0.5, 0.5.
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WFBETCEL - Scale factor used in definition of stoichiometric coefficient for microbial gas gen-
eration (dimensionless). Distribution: Uniform. Range: 0 to 1. Mean, median: 0.5, 0.5.

WGRCOR - Corrosion rate for steel under inundated conditions in the absence of CO2 (m/s). Dis-
tribution: Uniform. Range: 0 to 1.58 × 10−14 m/s. Mean, median: 7.94 × 10−15 m/s,
7.94× 10−15 m/s.

WGRMICH - Microbial degradation rate for cellulose under humid conditions (mol/kg·s). Distri-
bution: Uniform. Range: 0 to 1.27× 10−9 mol/kg·s. Mean, median: 6.34× 10−10 mol/kg·s,
6.34× 10−10 mol/kg·s.

WGRMICI - Microbial degradation rate for cellulose under inundated conditions (mol/kg·s). Dis-
tribution: Uniform. Range: 3.17×10−10 to 9.51×10−9 mol/kg·s. Mean, median: 4.92×10−9

mol/kg·s, 4.92× 10−9 mol/kg·s.

WMICDFLG - Pointer variable for microbial degradation of cellulose. Distribution: Discrete,
with 50% 0, 25% 1, 25% 2. WMICDFLG = 0, 1, 2 implies no microbial degradation of
cellulose, microbial degradation of only cellulose, microbial degradation of cellulose, plastic,
and rubber.

WRBRNSAT - Residual brine saturation in waste (dimensionless). Distribution: Uniform. Range:
0 to 0.552. Mean, median: 0.276, 0.276.

WRGSSAT - Residual gas saturation in waste (dimensionless). Distribution: Uniform. Range: 0 to
0.15. Mean, median: 0.075, 0.075.
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